
Parallel Patterns for General Purpose Many-Core

Daniele Buono, Marco Danelutto, Silvia Lametti and Massimo Torquati
Dept. Computer Science – Univ. of Pisa, Italy

{d.buono,marcod,lametti,torquati}@di.unipi.it

Abstract—Efficient programming of general purpose many-
core accelerators poses several challenging problems. The high
number of cores available, the peculiarity of the interconnection
network, and the complex memory hierarchy organization,
all contribute to make efficient programming of such devices
difficult. We propose to use parallel design patterns, imple-
mented using algorithmic skeletons, to abstract and hide most
of the difficulties related to the efficient programming of many-
core accelerators. In particular, we discuss the porting of the
FastFlow framework on the Tilera TilePro64 architecture and
the results obtained running synthetic benchmarks as well
as true application kernels. These results demonstrate the
efficiency achieved while using patterns on the TilePro64 both
to program stand-alone skeleton-based parallel applications
and to accelerate existing sequential code.

Keywords-Structured programming, many-core, shared
memory, accelerators, TilePro64.

I. INTRODUCTION

CPU hardware advances move along two distinct axes: on
the one hand, more and more powerful and integrated multi-
core architectures are developed, where a relatively limited
number of cores (typically 4 to 16) share a standard mem-
ory hierarchy highly optimized to support efficient cache
coherency mechanisms. On the other hand, several “general
purpose co-processors” are developed with a big number
of cores (typically 64 to 128) interconnected using regular
networks (meshes and/or rings, usually) with several distinct
and very efficient mechanisms supporting accesses to core
local caches as well as inter-core communications. Notable
examples of this second kind of (co)processors are the Intel
MIC [1] and the Tilera architectures [2]. These general
purpose co-processors are aimed to compete with the more
classical, GPU style co-processors in all those fields where
data parallelism is not enough, and they may be seamlessly
programmed using standard tools and mechanisms, such as
POSIX threads. However, all vendors provide proprietary,
low level libraries to support more efficient parallel program-
ming of these machines. As an example, Tilera proposes
two distinct environments in addition to plain Linux POSIX
threads environment: a POSIX thread only environment (one
thread per core, no Linux processes/scheduler behind), and
a “bare metal” environment (one C/C++ program/thread per

0This work has been partially supported by EU FP7 STREP No. 288570
ParaPhrase. Silvia Lametti is a recipient of the Google Europe Fellowship
in Computer Architecture, and this research is supported in part by this
Google Fellowship.

core, with access to the lower level inter core communication
library only).

The programming scenario presented to the application
programmer has therefore two different and somehow con-
tradicting features: a) it is definitely higher level with
respect to the programming scenario exposed by GPGPUs,
and in general supports rapid porting/prototyping of shared
memory POSIX applications, but also b) it requires a deep
understanding both of the peculiarities of the hardware
architecture and of the features of the proprietary libraries
provided to exploit lower level hardware characteristics and
therefore to be able to make a better usage of the advanced
architectures.

In this work, we attack the problem of providing suit-
able, user (application programmer) friendly and efficient
programming frameworks for general purpose many-core
co-processor architectures. We adopt a structured parallel
programming approach based on the usage of parallel design
patterns [3] and algorithmic skeletons [4] and we demon-
strate that skeletons implementing well-known parallel pat-
terns may be used to encapsulate all the idiosyncrasies rel-
ative to the efficient implementation of parallel applications
on these devices, both in case of full parallel application
running on the co-processor and in case of parallelization of
applications through “domain specific software accelerators”
running on the co-processor. In particular our contribution
may be stated as follows:

• We ported FastFlow, a shared memory structured par-
allel programming framework targeting shared memory
multi-cores [5], on the Tilera TilePro64 architecture.

• We demonstrated that FastFlow may efficiently run
synthetic kernels as well as real applications on the
TilePro64 completely fulfilling the architecture poten-
tialities both in case of stand-alone applications exe-
cuted on the co-processor and of software accelerators
offloaded from applications running on the host ma-
chine.

• We demonstrated different optimizations related to
memory hierarchy usage and cache coherency manage-
ment that may be directly encapsulated at the skeleton
level, leaving the application programmer free to con-
centrate on the business logic of the application at hand.

Figure 1: TilePro64 architecture (chip architecture (left) and
single core architecture (right))

II. TILEPro64 PROCESSOR ARCHITECTURE

The TilePro64 [2] processor features 64 identical pro-
cessing cores (tiles) interconnected with Tilera’s iMesh on-
chip network. Each tile consists of a) a 3-way superscalar
VLIW processor running at 866MHz, b) a cache subsystem
composed of 16KB Level 1 instruction Cache (L1i), 8KB
Level 1 data cache (L1d) and 64 KB Level 2 cache (L2),
and c) a switch that implements the iMesh interconnection
network. The cache subsystem also contains a Translation
Lookaside Buffer (TLB) and a DMA engine that support au-
tomatic memory-to cache and cache-to-cache data transfers.
In contrast to common multi-core, no automatic memory
prefetching mechanisms are provided.

The iMesh [6] NoC is composed of five independent
meshes, each carrying a different kind of traffic. One (MDN)
is dedicated to memory transfers in such a way memory
accesses are not influenced by other traffic, another one
(UDN) is reserved to user-level traffic1, The other meshes
are dedicated to I/O transfers and cache coherence protocol.

To sustain the memory bandwidth requirements relative to
the 64 cores, the TilePro64 provides four on-chip memory
controllers that are placed at the four edges of the mesh.
Therefore, the memory latency from a given tile depends on
the tile position in the mesh and on the memory controller
selected.

Figure 1 shows the architecture diagram of the TilePro64
processor. The TilePro64 design includes an innovative,
distributed and scalable approach handling virtual memory
and cache coherence on chip. Virtual memory pages are
“striped” among the physical controllers in 8KB chunks.
The memory requests are therefore automatically spread
across the different memory controllers. By using a different
operating mode, the programmers may directly require to
allocate entire VM pages on particular memory controllers,
as usual in NUMA architectures.

1supporting explicit data transfers among tiles under application pro-
grammer orchestration

Tilera also provides advanced cache management mech-
anisms and policies. As an example, in order to guaran-
tee cache coherence, the TilePro64 implements Dynamic
Distributed Cache (DDC)[7]. This is a kind of distributed
directory mechanism implemented on top of L2 caches.
The basic idea is that for each cache line a tile is elected
to be the cache line Home Node. This Home Node is
responsible for handling the coherency relative to the line, by
always maintaining an updated version and sending proper
invalidations when needed. This “homing” mechanism is
handled by the L2 cache of the tile, so that any local L2
space is contended by the core on the tile and the DDC.

The home node is commonly determined by an hash
function that enforces a uniform distribution among the 64
tiles. This represents a substantial improvement when using
a few cores: by using DDC we are given the abstraction of a
virtual distributed inclusive L3 cache, composed by the sum
of all tiles’ L2 caches. However, when a lot of cores are
used in a computation, for every cache line in the program
working set there must be an home node containing and
managing the line updated copy. On average, the tile using
a line will not be its home, and therefore two copies of the
line will be allocated in L2, de facto halving the L2 capacity.
For this reason DDC is specified on a virtual-memory-page
basis and allows different homing strategies. Aside from the
hashing, a programmer can define a specific tile as home
node for the entire memory page. If properly selected, the
home node will match the core that is extensively using
that page, reducing the L2 contention effect. Or, coherency
can be completely disabled by defining no home node for
the page. This turns out to be quite useful when using
read-only memory pages. In all the other cases, disabling
coherency means that the (application) programmer must
explicitly flush data from caches to ensure data coherence.

Using programmer-specific DDC settings is facilitated
by the Tilera proprietary library TMC[7]. Instead of using
the heap space, however, TMC entries add and remove
virtual memory pages, with the required DDC settings. The
following code shows common usage of these functions.
1 // Variable containing allocation settings
2 tmc alloc t alloc = TMC ALLOC INIT;
3 // Setting the Home Node on the worker node
4 tmc alloc set home(&alloc,id worker);
5 // Disabling the automatic Cache Coherence mechanisms...
6 tmc alloc set home(&alloc,TMC ALLOC HOME INCOHERENT);
7 // Allocating a set of virtual memory pages with the specified settings
8 t = (task t *) tmc alloc map(&alloc,sizeof(task t)) ;
9 // Flushing modified data in case of incoherent memory

10 tmc mem flush(t,sizeof(task t)) ;
11 // And dellocating a set of virtual memory pages
12 tmc alloc unmap(t, sizeof (task t)) ;

The TilePro64 processor architecture defines a relaxed
memory consistency model: both load and store can be
reordered (similar to POWER architectures and in contrast
to x86 architectures where store order is guaranteed). A
memory fence instruction is provided to force ordering,
if needed. Moreover, according to a pure RISC approach,

Figure 2: FastFlow layered architecture and basic patterns.

a single atomic Test-And-Set has been included in the
instruction set.

Some of the 64 cores are not available to user programs,
as they are used to run O.S. specific code to drive external
interfaces (i.e. networks and PCIe). Indeed the programmer
may disable or move to specific tiles most of these drivers.

In addition to normal inter-tile data exchange through
shared memory, the TilePro64 architecture provides mech-
anisms to support inter-tile message passing through the
iMesh NoC. This mechanisms ensure ultra low latency
communications, while providing several limitations on the
amount of data exchanged in a single communication.

III. THE FastFlow PROGRAMMING FRAMEWORK

FastFlow2 is a structured parallel programming environ-
ment implemented in C++ on top of POSIX threads. It pro-
vides programmers with predefined and customizable stream
parallel design patterns such as task farms and pipelines. It
has been initially designed and implemented to be efficient
in the execution of fine grain parallel applications on general
purpose multi-core architectures [8]. The FastFlow design
is layered (see Fig. 2). The lower layer implements a
lock-free and wait-free Single-Producer, Single-Consumer
queue [9]. On top of this mechanism, the second layer
provides Single-Producer Multiple-Consumers and Multiple-
Producers Single-Consumer queues using arbiter threads.
This abstraction is designed in such a way that arbitrary
networks of activities can be expressed while maintaining
the high efficiency of the synchronizations. Eventually, the
third layer provides several parallel patterns as standard C++
classes [10] (Fig. 2, right).

In FastFlow, the concept of concurrent activity (i.e. of
a flow of control that may be run in parallel with other
flows of control) is abstracted by the ff_node class. An

2Project site http://sourceforge.net/projects/mc-fastflow/

Figure 3: Self-offloading on the FastFlow software acceler-
ator.

ff_node is used to encapsulate sequential portions of
code implementing functions as well as higher level parallel
patterns such as pipelines and farms. Each ff_node will
be used to run a concurrent activity in a thread, and it has
associated two (shared memory) message queues: one used
to receive pointers to input data to be processed, and one to
deliver the pointers to computed results.

The FastFlow predefined patterns may be customized in
different ways, e.g. by nesting pipelines with farm stages
and vice versa. Using the customization features, different
patterns may be implemented in terms of the pipeline and
farm building blocks, including divide&conquer, map and
reduce patterns.

Although not detailed in this work, FastFlow is being
currently extended to support the offloading of data parallel
computation to GPUs, and to target homogeneous multi-core
COW/NOW.

A. FastFlow accelerator interface

The original design of FastFlow actually provides the
application programmer with two distinct operation modes.
The first one (standalone parallel program mode) basically
provides the possibility to write full parallel applications as
(compositions of) FastFlow parallel design patterns. The
application code, in this case, consists in a C++ main where
the pattern (nesting) structure is declared and executed using
proper calls to the methods provided by the ff_node class.

The second mode (accelerator mode) instead, supports the
self-offloading of parallel computations from within standard
C++ sequential code to a software accelerator programmed
as a parallel design pattern composition. In this case, the
programmer creates the accelerator with mechanisms similar
to those needed to create a standalone parallel FastFlow
program and then offloads tasks to be computed to the
accelerator that asynchronously and in parallel computes

 0

 20

 40

 60

 80

 100

 120

 140

8 64 1k 8k 8 64 1k 8k

C
lo

c
k
 C

y
c
le

s

SPSC
uSPSC

Nehalem E7@2.0GHzTilePro64@866MHz

Figure 4: Average latency times for the FastFlow queues
on TilePro64 and Intel processors varying the buffer size.

them, delivering the results to the main program upon
request (Fig. 3, right). The accelerator is run on the unused
cores available on the target architecture, hence the self -
offloading term. In [5] more information about the FastFlow
accelerator can be found.

IV. PORTING FastFlow ON TILEPro64

Our original idea was to use structured parallel pro-
gramming techniques to exploit general purpose many-
core. Therefore we decided to port FastFlow on TilePro64.
FastFlow is actually provided as a set of .hpp files written
in C++ standard. In principle, recompiling is the only
action required to port the framework on the a different
architecture. However, two particular issues should be taken
into account. First, the Single-Producer Single-Consumer
(SPSC) lock free and wait free FastFlow queue requires
a memory fence instruction, which usually changes with the
instruction set/architecture. Second, some of the synchro-
nization mechanisms of the POSIX threads are known not
to be scalable (e.g. barriers), and less general, proprietary
mechanisms and libraries implementing the same kind of
synchronization should be used instead, if available. Indeed,
solving these issues are the only significant steps we had to
perform to port FastFlow onto the TilePro64.

While considering how to deal with these issues, we also
considered deeper modifications in the FastFlow runtime
support, to better exploit this architecture. In particular: a)
we developed a way to exploit per-virtual-page DDC policies
in a programmer-transparent way, so that every aspect is
handled by the FastFlow support, and b) we redefined the
FastFlow accelerator mechanism to support offloading of
computations from the main CPU cores to a TilePro64 co-
processor.

A. SPSC queue & synchronization mechanisms

The first part of the porting focused on the architecture
dependent instructions in the FastFlow runtime support.
In particular, the lock free and wait free SPSC queue
implementation requires to use a Write Memory Barrier
instruction (WMB)3 to enforce memory write operations
ordering. FastFlow was engineered in such a way it turned
out to be quite easy to define the behavior of the WMB for
each supported architecture, as shown in the following code.
1 # ifdef x86 64 // x86 32/64−bit: no memory fence is needed.
2 #define WMB() asm volatile (””: : :”memory”)
3 #endif
4 # ifdef tile // Tilera : using a compiler intrinsic for memory fence.
5 #define WMB() insn mf();
6 #endif

Indeed, the usage of this fence instruction comes at a cost:
Fig. 4 outlines the differences in between the average queue
latency on the TilePro64 and an x86 processor for bounded
(SPSC) and unbounded (uSPSC) FastFlow queues.

All critical synchronizations in FastFlow are imple-
mented on top of the SPSC queue, in a lock-free fash-
ion. However, some portions of code exist, used in non-
critical path, where atomic operations and pthread-based
synchronization mechanisms are used. Such mechanisms,
implemented in kernel space, are inefficient on the TilePro64
with a high number of threads, therefore we substituted them
with equivalent Tilera’s TMC spin-based user-level routines,
which are more scalable and predictable.

B. Memory Allocation Policies

As explained in Section III, the third layer of FastFlow
provides parallel patterns. The pattern structure of the ap-
plication can be used to derive important static information
on the flow of data and tasks among threads. In order to
provide optimized memory management policies based on
this knowledge, we decided to exploit the flexible cache
coherence mechanisms by defining enhanced cache coher-
ence settings for virtual pages containing task data. We
implemented three “Memory Allocation Policies”, that affect
the selection of the Home Node for the data structures:

• Hash Home Node (HHN). This is the default mode
defined by the architecture: an hash function is used
to uniformly distribute Home Nodes among all the
caches. HHN guarantees automatic cache coherence
and uniform usage of all the caches, although it may
increase the NoC traffic and reduce the effective amount
of cache usable per tile with high parallelism degrees.

• No Home Node - NHN With this policy the homing
mechanism is disabled, resulting in incoherent memory
pages, which can affect the correctness of the applica-
tion. However, the stream-parallel paradigm data-flow
semantics guarantees that each task is managed by only
one concurrent entity at a time. As a consequence

3In many works, the WMB instruction is also referred to as store-fence.

Figure 5: Task offloading to the TilePro64 accelerator.

coherency need to be ensured only when a task is
passed to a different concurrent entity. This property
allows us to let the application programmer work freely
with incoherent memory pages both in read and write
modes. When the work on the local task is finished
and before sending the task to another concurrent
entity, the FastFlow runtime can automatically and
transparently add memory flush operations to enforce
cache coherence.

• Fixed Home Node (FHN) We specifically select, for
each task, a tile that becomes its Home Node. This
proves to be effective when we succeed identifing the
thread in the parallel pattern (composition) performing
most of the work relative to a specific task. In this
case, we keep the automatic cache coherence, but we
remove most of the performance overhead of the DDC
mechanism. This characterization is actually possible
for the farm paradigm, where each task is entirely
processed by a single thread. Although theoretically
very promisingly, the main problem relative to this
policy arises considering that the destination thread
for a specific task is usually defined late at runtime.
This requires a delayed allocation of data for the
tasks. In turn, this may require the storage of task
data in temporary buffers up to the point where the
destination tile is eventually decided. More generally, to
fully exploit the FHN features, the programmer should
define his own task scheduling policy by overwriting
the proper FastFlow class methods.

The usage of these policies requires the adoption of the
proprietary memory allocation functions described in section
II. Keeping transparency in mind we decided to extend the

FastFlow specific memory allocator to “hide” the policy-
dependend operations, in such a way the application pro-
grammer is just required to call redefined malloc and free
operations. This integration also allows useful performance-
related optimizations to be implemented. Knowing that the
overhead of allocating and deallocating virtual memory
pages is actually bigger than with common malloc/free ops,
because of the interaction with TLBs, for example, the
allocator implements a caching mechanism that recycles
unused memory pages for later requests in such a way this
problem is solved.

C. Accelerator

The data exchange between the host and the accelerator
takes place via the PCI-Express link using a proprietary
zero-copy communication Tilera library. On the host side the
main program is executed, which may also be a concurrent
FastFlow program, whilst on the TilePro64 a complete
skeleton composition is instantiated and run through another,
dedicated main program. As exemplified in Fig. 5, all the
functions required on the host side are encapsulated in a
ff_tileAccelerator object, using two device files to
communicate with the skeleton. ff_tileAccelerator
provides init and close functions to start and stop
accelerator operations, in addition to the offload and
get_result functions supporting asynchronous task of-
floading to and result retrieving from the accelerator, re-
spectively. The number of input and output buffer slots for
each communication channel can also be specified in the
initialization phase. The buffer slots determine the maximum
number of 64Kbyte messages that can be stored in the
channel without being blocked in the offloading operation.
On the TilePro64 side, after the ff_tileAccelerator
init has been called and before the close is called,
the complete “accelerator” skeleton is defined and run,
similarly to what happens when a stand-alone FastFlow
skeleton program has to be run. The coordinated execution
of the offloading functions on the host and on the TilePro64
directly and seamlessly implements a flow of tasks from the
host to the co-processor and of results from the co-processor
to the host.

Conceptually, the offloading operation directly connects
the host side offload with the Emitter of a farm skeleton
or the first stage of a pipeline skeleton on the co-processor,
while the delivering a result operation on the co-processor
connects the Collector of a farm skeleton or the last stage
of a pipeline skeleton with the host side get_result.
Furthermore, the asynchronous offloading allows the host to
execute a different part of the application, including another
FastFlow skeleton, in parallel with the offloaded work.

V. EXPERIMENTS

Experiments were performed on a TILEncore card [2],
equipped with a 866MHz TilePro64 and 8GB of RAM. The

 8

 16

 32

 64

 1 10 100 1000

S
p

e
e

d
u

p

Computation grain (ms)

ideal

 8

 16

 32

 64

 1 4 16 64 256 1024 4096

S
p

e
e

d
u

p

Num. operations between two stores

ideal

Figure 6: MAP-like benchmark. Left: Speedup obtained varying per worker computation grain. Right: Speedup obtained
varying the computation grain w.r.t. the number of memory operations.

 0

 10

 20

 30

 40

 50

1 6 12 18 24 30 36 42 48 54

S
p

e
e

d
u

p

FastFlow worker threads

ideal
HHN
NHN
FHN

 0

 10

 20

 30

 40

 50

1 6 12 18 24 30 36 42 48 54

S
p

e
e

d
u

p

FastFlow worker threads

ideal
HHN
NHN
FHN

Figure 7: Stream matrix multiplication (Ai×Bi) using different memory task allocation policies: Hash Home Node (HHN),
No Home Node (NHN) and Fixed Home Node (FHN). Left: 64×64 integer matrices. Right: 128×128 integer matrices.

board is installed on a 24-core AMD Opteron server. Only
56 out of 64 cores were available to run user code. Two
additional concurrent activities are needed when running
FastFlow task farms (emitter and collector–E and C in the
left side of Fig. 2), and therefore the maximum parallelism
degree in our experiments was 54 (W in Fig. 2).

A. Synthetic Benchmarks

The first experiment was aimed at characterizing the
computational grain required to fully exploit the TilePro64
architecture by using the FastFlow programming model,
that is to compensate the (small) overhead introduced by
FastFlow. We wrote a map-like application, where the
same operation is applied to a fixed set of elements. We
removed memory access operations from the code to avoid
memory-related problems, in such a way each thread (map

worker) was just performing a number of multiplications
without memory access nor synchronizations. By varying the
number of operations, we can easily change the computation
grain and analyze the speedup obtained by the parallel
FastFlow application. Figure 6 (left) shows that when using
the FastFlow run time on the TilePro64, good speedups
may be obtained if tasks last more than 10ms, and in case
of relatively long computations (around 100ms) maximum
speedup may also be expected.

Current multi-core architectures employs a limited num-
ber of cores, and often incur memory-bandwidth problems
when using high parallelism. On the TilePro64 the problem
is exacerbated by the limited amount of caches and the
high number of cores. To study this problem, we used the
same map-like benchmark as before, but in this case to each

 0

 10

 20

 30

 40

 50

1 6 12 18 24 30 36 42 48 54

S
p
e
e
d
u
p
/S

c
a
la

b
ili

ty

FastFlow worker threads

ideal
Speedup
Scalability

Figure 8: Speedup vs Scalability for the stream matrix
multiplication benchmark using 128×128 integer matrices.

worker is given a partition of an input data structure where a
given number of integer multiplications is executed on each
element. The result is stored in an output data structure. In
the test we vary the number of multiplication per element,
so that we are able to change the amount of time between
two memory operations. To guarantee that the computation
grain is enough to maintain the expected speedup, when
reducing the number of operations per elements we increase
the number of elements, so that the overall number of
multiplications in the benchmark is kept fixed.

The results in Fig. 6 (right) confirm that the TilePro64 is a
well balanced architecture, despite the high number of cores.
With a very limited number of instructions per element
(i.e. from 1 to 16) the memory subsystem becomes the
bottleneck. However, as long as algorithms exploit locality
we usually fall in the right part of the graph, where the
memory subsystem is able to efficiently support parallel
activities on 54 cores.

B. Kernel-based Benchmarks

To obtain a better idea on real world applications we exe-
cuted a matrix multiplication written in FastFlow exploiting
the farm skeleton on a stream of 3200 matrices. The matrix
multiplication problem is interesting w.r.t. cache hierarchies
because performs O(N3) operations over O(N2) data, con-
ceptually resulting in very good data reuse; however, because
of the algorithm, this actually happen only if matrices are
small enough to completely stay in cache. In this case the
number of memory-cache transfers matches the amount of
data (i.e. we transfer an element from the memory only the
first time we access it); on the other hand, if matrices are
larger than the cache, we lose data reuse (i.e. by the time
we access a previously used element, it has been removed
from the cache because of cache trashing), and the number
of memory-cache transfers grows to O(N3).

Given the previous results we expect that in this case the
memory bandwidth and the coherence system becomes the
bottleneck. We therefore tested the different cache coherence
allocation modes discussed in section IV, to check if and
how much a specific cache-coherence policy affects the
performance of an application.

Figure 7 shows the results for the two test cases: one using
64×64 and the other using 128×128 matrices of integers.
For each one we tested the three DDC policies supported
in the farm paradigm. With high parallelism degrees we can
actually see very different results depending on the DDC
policy used. Considering smaller matrices, we have that each
matrix takes 16KB of space, so that the entire working set of
each worker for each task is 48KB. This means that in this
case the working set is small enough to fit in the L2 cache of
one tile and therefore the number of memory transfers are
minimized. We obtained a very good scalability with the
FHN and NHN policies. Instead, the standard HHN policy,
works very well up to ∼ 20 nodes, then it suddenly stops
working. This is because of the L2 halving effects described
in section II: with a large parallelism degree, the L2 cache
available for each tile is less than the required 48KB.

When using 128×128 matrices, the working set is larger
than the cache sizes independently of the DDC policy
adopted. In this case the incoherent policy (NHN) still works
better than the other two policies. In this test is possible to
observe the benefits of using the DDC as a big virtual L3
cache when using the HHN policy: when running sequential
programs or parallel ones with small parallelism degree, we
may have that the sum of all L2 caches is large enough
to contain the working set of the application, so that the
performance can be much better than the other two allocation
policies. This also means that the speedup (calculated w.r.t. a
standard sequential version) is indeed an unfavorably metric
for the other two modes. This is shown in Fig. 8, where we
compare the speedup and the scalability of using the NHN
policy for the case 128×128: using 54 workers thread the
application is 42 times faster w.r.t one worker, although the
speedup is ∼ 37X . This is because the reference sequential
version uses the standard HHN policy, and is 11% faster
than the corresponding one using the NHN policy.

C. TilePro64 as an accelerator

Finally, we tested the many-core in a more realistic envi-
ronment, where a sequential application uses the TilePro64
to speed-up just a specific part of the computation, by ex-
ploiting the FastFlow accelerator interface. The accelerated
part consists of a set of matrices A1, A2, ..., AN that are
multiplied by a fixed matrix B; the resulting matrices are
then gathered back to the sequential program. This pattern
of computation is used in many different numerical and
graphical applications.

The results are sketched in Fig. 9 for different matrix sizes
considering the HHN (left) and the NHN (right) policies.

 0

 10

 20

 30

 40

 50

1 6 12 18 24 30 36 42 48 54

S
p

e
e

d
u

p

FastFlow worker threads

ideal
128x128
64x64
32x32

 0

 10

 20

 30

 40

 50

1 6 12 18 24 30 36 42 48 54

S
p

e
e

d
u

p

FastFlow worker threads

ideal
128x128
64x64
32x32

Figure 9: Stream matrix multiplication (Ai × B) using the accelerator considering three different task granularities. Left:
Hash Home Node (HHN) policy set. Right: No Home Node (NHN) policy set.

As expected, with very small computations (i.e. matrices
of 32 × 32 integer elements) the FastFlow runtime plus
the communication overheads make offloading inconvenient.
However, with bigger tasks, we reach the same performance
results obtained by the stand-alone configuration, meaning
that we are able to completely mask the communication
overhead. In this benchmark the HHN policy behaves quite
well mainly because the farm workers receive only one
matrix (Ai), thus the DDC traffic due to cache contention
is reduced. Furthermore, for the 64×64 case, the working
set fits in the L2 cache of a single tile, thus no significant
performance differences result when using either the NHN
or the HHN policy.

VI. RELATED WORK

There have been few research efforts evaluating high level
parallel programming models for general-purpose many-core
architectures, none of them focused on TilePro64 processor,
to the best of our knowledge.

In [11] the authors discuss the porting of the UPC parallel
compiler on Tile64, evaluating two alternative implementa-
tions for the communication systems: one based on shared
memory mechanisms, and one using an MPI layer exploiting
the iMesh NoC. The study reveals various optimization
techniques based on specific features of the Tile64. The
Remote Store Programming model (RSP) has been presented
and evaluated on the TilePro64 in [12]. The authors demon-
strated the performance advantages of using the RSP model
with respect to the classical cache-coherent programming
model using several benchmarks. Our study confirms their
results, although by using a completely different approach.
In fact, by carefully using low level architectural features of
the TilePro64 processor, which allows to minimize memory
load latency by increasing cache locality, we obtained better

performance in almost all tests. In [13], the authors presented
an adaptive task management scheme for the TilePro64,
also evaluating the performance of some well-known multi-
queue work-stealing scheduling strategies. The work mainly
focuses on designing a smart adaptive task management code
able to dynamically reconfigure itself at runtime, with no
focus on the features of the TilePro64. Other works are
mainly focused on the performance evaluation of specific
applications optimized for Tile64 and TilePro64 [14], [15],
[16].

The algorithmic skeleton community has proposed various
programming frameworks aimed at providing the application
programmer with very high level abstractions completely
encapsulating parallelism through patterns [4], [17]. Pro-
gramming frameworks based on the algorithmic skeleton
concept exist targeting both clusters/networks of worksta-
tions and shared memory multi-core. Some of them also
target GPGPUs [18], [19]. To the best of our knowledge,
our work is the first aimed at porting a skeleton based
programming framework on general purpose many-core ar-
chitectures, either as stand-alone programming environment
or as accelerator.

VII. LESSONS LEARNED AND CONCLUSIONS

In this paper we presented the porting of the FastFlow
parallel programming framework on TilePro64. The avail-
ability of general purpose cores on the Tilera co-processor
allowed us to port the FastFlow runtime basically unmodi-
fied. We rewrote a very limited part of the original FastFlow
code using Tilera specific libraries instead of generic Pthread
ones in order to provide performance-effective solutions, es-
pecially as far as memory allocation policies are concerned.

Most of our work focused on efficient exploitations of
the highly configurable cache coherence mechanism peculiar

of the TilePro64. We demonstrated that the overhead intro-
duced by the default memory allocation mechanism when
using high percentages of available cores may significantly
affect the scalability of the parallel application. This means
that in order to reach the ideal speedup we need specific
application driven solutions. We proved that proper man-
agement of software cache coherence mechanisms may be
a promising and effective way of programming general pur-
pose many-core architectures with high parallelism degrees,
as long as a parallel patterns are used to support the program-
mer activities. The usage of parallel patterns gives enough
knowledge relative to the parallel structure of the program
to support the definition of per-pattern memory allocation
policies and, equally important, to mask all the architecture-
related mechanism management in the FastFlow runtime
support, making those techniques effective and completely
transparent to the application programmer.

We also tested the possibility to use the TilePro64 as a
general-purpose accelerator. With sufficiently coarse grain
tasks we were able to efficiently mask the communica-
tion overhead, reaching performance results as good as in
the stand-alone configuration. From a software engineering
viewpoint, the FastFlow code used to offload computations
on this co-processor turns out to be very similar to the
code used for self-offloading computations on spare cores
of a multi-core architecture. Eventually, the possibility to
use a POSIX-based OS and the availability of a stable,
well documented programming environment, made our work
much easier and faster w.r.t to the effort required to program
non general purpose accelerators (GPU). This is even more
important in an application programmer perspective: a Fast-
Flow program written for an x86 architecture will run (ef-
ficiently) on a TilePro64 machine with minor modifications
to the original code.

REFERENCES

[1] L. Koesterke, J. Boisseau, J. Cazes, K. Milfeld, and
D. Stanzione, “Early experiences with the intel many inte-
grated cores accelerated computing technology,” in Proc. of
the 2011 TeraGrid Conference: Extreme Digital Discovery.
New York, NY, USA: ACM, 2011, pp. 21:1–21:8.

[2] Tilera Corporation, “TilePro Processor Family,” 2012, http:
//www.tilera.com/products/processors/TILEPro Family.

[3] T. Mattson, B. Sanders, and B. Massingill, Patterns for
parallel programming. Addison-Wesley Professional, 2004.

[4] M. Cole, “Bringing skeletons out of the closet: a pragmatic
manifesto for skeletal parallel programming,” Parallel Com-
puting, vol. 30, no. 3, pp. 389–406, 2004.

[5] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin, and
M. Torquati, “Accelerating code on multi-cores with fastflow,”
in Proc. of 17th Intl. Euro-Par 2011 Parallel Processing, ser.
LNCS, vol. 6853. Springer, 2011, pp. 170–181.

[6] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. Brown, and
A. Agarwal, “On-chip interconnection architecture of the tile
processor,” Micro, IEEE, vol. 27, no. 5, pp. 15 –31, sept.-oct.
2007.

[7] Tilera Corporation, Tile Processor User Architecture Manual,
2011.

[8] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,”
in Programming Multi-core and Many-core Computing Sys-
tems, ser. Parallel and Distributed Computing. Wiley, 2012,
ch. 13.

[9] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Meneghin,
and M. Torquati, “An efficient unbounded lock-free queue
for multi-core systems,” in Proc. of 18th Intl. Euro-Par 2012
Parallel Processing, 2012, pp. 662–673.

[10] M. Aldinucci, M. Danelutto, and M. Torquati, “Fastflow
tutorial,” Università di Pisa, Dipartimento di Informatica,
Italy, Tech. Rep. TR-12-04, 2012.

[11] O. Serres, A. Anbar, S. Merchant, and T. El-Ghazawi, “Ex-
periences with upc on tile-64 processor,” in Proc. of the 2011
IEEE Aerospace Conference, ser. AERO ’11, Washington,
DC, USA, 2011, pp. 1–9.

[12] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store
programming,” in High Performance Embedded Architectures
and Compilers, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2010, vol. 5952, pp. 3–17.

[13] C. T. D. Waddington and K. Sivaramakrishnan, “Scalable
lightweight task management for mimd processor,” in Sys-
tems for Future Multicore Architectures, EuroSys workshop,
Salzburg, Austria, April 2011, pp. 1–6.

[14] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele,
“Power and performance evaluation of memcached on the
tilepro64 architecture,” Sustainable Computing: Informatics
and Systems, vol. 2, no. 2, 2012.

[15] C. Villalpando, A. Johnson, R. Some, J. Oberlin, and S. Gold-
berg, “Investigation of the tilera processor for real time
hazard detection and avoidance on the altair lunar lander,”
in Aerospace Conference, 2010 IEEE, march 2010, pp. 1 –9.

[16] C. Yan, F. Dai, and Y. Zhang, “Parallel deblocking filter for
h.264/avc on the tilera many-core systems,” in Proc. of the
17th Inter. Conf. on Advances in multimedia modeling, ser.
MMM’11, Berlin, 2011.

[17] H. González-Vélez and M. Leyton, “A survey of algorithmic
skeleton frameworks: High-level structured parallel program-
ming enablers,” Software: Practice and Experience, vol. 40,
no. 12, pp. 1135–1160, 2010.

[18] J. Enmyren and C. W. Kessler, “Skepu: a multi-backend
skeleton programming library for multi-gpu systems,” in Proc.
of the 4th Inter. workshop on High-level parallel programming
and applications, ser. HLPP ’10, New York, NY, USA, 2010.

[19] S. Ernsting and H. Kuchen, “Algorithmic skeletons for multi-
core, multi-gpu systems and clusters,” Int. J. High Perform.
Comput. Netw., vol. 7, no. 2, pp. 129–138, Apr. 2012.

