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Abstract. SASfit has been written for analyzing and plotting small angle scattering
data. It can calculate integral structural parameters like radius of gyration, scattering
invariant, Porod constant. Furthermore it can fit size distributions together with sev-
eral form factors including different structure factors. Additionally an algorithm has
been implemented, which allows to simultaneously fit several scattering curves with a
common set of (global) parameters. This last option is especially important in contrast
variation experiments or measurements with polarised neutrons. The global fit helps
to determine fit parameters unambiguously which by analyzing a single curve would
be otherwise strongly correlated. The program has been written to fulfill the needs
at the small angle neutron scattering facility at PSI (http://kur.web.psi.ch). The
numerical routines have been written in C whereas the menu interface has been written
in tcl/tk and the plotting routine with the extension blt. The newest SASfit version
can be downloaded from http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html.

http://kur.web.psi.ch
http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html
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CHAPTER 1

Introduction to the data analysis program SASfit

Small-angle scattering (SAS) is one of the powerful techniques to investigate the
structure of materials on a mesoscopic length scale (10 - 10000 Å). It is used to study
the shapes and sizes of the particles dispersed in a homogenous medium. The materials
could be a macromolecule (biological molecule, polymer, micelle, etc) in a solvent, a
precipitate of material A in a matrix of another material B, a microvoid in certain
metal or a magnetic inhomogeneity in a nonmoagnetic material. This technique is also
used to study the spatial distribution of particles in a medium, thus providing the
information about the inter-particle interactions. The small angle scattering methods
includes small angle neutron, x-ray or light scattering. The type of samples that can be
studied by scattering techniques, the sample environment that can be applied, the actual
length scale probed and the information that can be obtained, all depend on the nature
of the radiation employed. The advantage of small-angle neutron scattering (SANS)
over other SAS methods is the deuteration method. This consists in using deuterium
labeled components in the sample in order to enhance their contrast. Whereas SANS
has disadvantaged over small-angle x-ray scattering (SAXS) by the intrinsically low flux
of neutron sources compared to the orders of magnitude higher fluxes of x-ray sources.
Neutron scattering in general is sensitive to fluctuations in the density of nuclei in the
sample. X-ray scattering is sensitive to inhomogeneities in electron densities whereas
light scattering is sensitive to fluctuations in polarizability (refractive index). In general,
irrespective of the type of radiation, they also share several similarities. Perhaps the most
important of these is the fact that, with minor adjustments to account for the different
types of radiation, the same basic equations and laws can be used to analyze data from
these techniques. The small-angle scattering data can contain information concerning
both the structure and interaction within the sytem. This information can be obtained
by either performing model-independent analysis or detailed model dependent analysis.
SASfit is such a software package built for analysis of small-angle neutron scattering
data concerning soft matter. The main emphasis of the software is to provide easy to
use visual interface for the new as well as for an expert user. The software package
contains most of the tools to treat large range of scientific problems and large volume of
data produced on a SAS instrument. It allows users to derive useful information from
the SAS scattering data.

1.1. System Requirements And Software Installation

SASfit is a program for analyzing small angle scattering data. The numerical fitting
routines are written in C and the menu interface in tcl/tk. For the plotting of the
data the tcl extension blt has been used. The last version 0.85 of SASfit has been
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14 1. INTRODUCTION TO THE DATA ANALYSIS PROGRAM SASfit

tested with the tcl/tk version 8.3 and the blt version 2.4s.

SASfit is available for users analysing data taken at PSI.
SASfit has been developed at the Paul Scherrer Institute (PSI) and remains c© of PSI.
SASfit is provided to users of the PSI facilities.
SASfit is provided ”as is”, and with no warranty.

1.1.1. Installation Procedure.

SASfit has has been compiled with tcl/tk 8.4 and Blt 2.4. To install the SASfit

package one has to do the following:

(1) Download the zip-file ”sasfit.zip” from the SASfit-home page
http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html

(2) extract the contents of the zip file. A new subdirectory called sasfit will be
generated, which contains all required files.

(3) Execute the program ./sasfit/sasfit.exe



CHAPTER 2

Quick Start Tour

2.1. User Interface Window

(a) main window (b) popup menu

Figure 2.1. Main SASfit graphical user interface window

The core SASfit window consists of various tabs (shown in the oval marking
in the figure 2.1(a), they are ”fit of single data set”, ”multiple data sets

for global fitting”, ”residuum”, ”size distrib.”, ”integral structural

parameters”, ”parameters of analytical size distrib.”, ”moments of

analytical size distrib.”, and ”2D detector intensity” as shown in the
red oval selection. The tabs for single data set and multiple data sets are used to plot
single or multiple data files and view the plotted graphs along with the operations to
perform during fitting. Residuum shows the difference between the experimental and
theoretical fits. Size distributions give the plotted view of the number density v/s radius
of the particle. Integral structural parameters are obtained using model independent
fitting, such as Guinier approximation, Porod law etc. Parameters of analytical size
distributions provides with details of size distributions used and the numbers obtained,
whereas moments of analytical size distribution shows the contribution of scattering
from different size distribution. The final tab 2D detector intensity is used in case of
anisotropic scattering data. The window were the graphs are generated has options of
printing the graph plotted view, copying the data in the ASCII format or as an image
(wmf) format for further processing or presenting (figure 2.1(b)). SASfit accepts the

15
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isotropic data in the ASCII format. The data can be imported as a single data set or
for multiple data sets (several scattering curves).

2.2. Importing data files for a single data set

Figure 2.2. Menu interface for input single data set

(a) Path and format selection for new file (b) Selecting the format columns of the file

Figure 2.3. Importing single data sets

The single data set option allows the user to perform operation on a single data file
only. The file is imported via, [File|Single Data Set...] (Figure 2.2). This will open
a new file window as shown in figure 2.3(a). The location of the file could be browsed
and respectively selected. The options buttons is supplied to select the input format,
which is performed by supplying a string such as xye. Where x, y and e stands for the
scattering vector Q, scattering intensity I(Q), e signifies the error bar ∆I(Q) on the
measured scattering intensity. The error bars are required during the fitting operation
and for files which do not contain the error bar column it would be calculated by default
from the smoothing of the curve. There is an option to skip lines at the beginning of
the data, which is intended to be used to skip header information in a data file , which
could be misinterpreted as data. The number n specified in the menu defines the number
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of lines skipped at the beginning of the data file. Furthermore a file extension can be
provided, unit conversions can be performed as well as only non-negative y-values could
be selected for plotting and performing further analysis. On pressing ok the data is
loaded and the graph is plotted, with a new window labeled merge files being opened.

(a) Merge window for merging different Q scales
into a single profile

(b) An example showing merged data files (c) resolution parameter in-
terface

Figure 2.4. Merging many data files to one data set

In SAS, data can be collected at different collimator and sample to detector distances
to correspond for a wide Q scale. Thus for a single sample at a given condition there can
be more than one data files, to merge all of them together for completing the scattering
profile, the above shown window comes into play. As shown in the merge files window,
the new file could be browsed and selected; it has to be read using the read file button.
The newly read file is listed below the first file, if it’s a wrong selection it could be
deleted back, also one can scale the different files measured at different Q windows,
using the divisor column to have a continuous scattering profile. After scaling all the
data profiles into one single profile, the statistically bad and unwanted data points can
be removed by skipping the points at the beginning and at the end of the data files. The
resolution parameters can be provided by pressing the resolution button and the required
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information such as sample to detector distance, collimation distance, cross section of
the guide etc as shown in figure (c) has to be entered to use resolution smearing during
the fitting. The new button is use to discard all the current selections and plotted data
files and starts a new session. The file could also be imported by pasting the clipboard
data on the graph view as shown in the figure below. The conditions for columns are
same as that for reading the file via browse method.

2.3. Importing data files for multiple data sets

Figure 2.5. Procedure for importing data files for multiple data sets

The multiple data set option allows the user to perform operation on multiple data
files by using common set of (global) parameters. This option is especially impor-
tant in contrast variation experiments or measurements with polarized neutrons. The
global fit helps to determine the fit parameters unambiguously which by analyzing
a single curve would be otherwise strongly correlated. The file is imported by first
going to multiple data sets for global fitting (red box in Figure 2.5) and then via,
[File|Multiple Data Set...]. This will open a new window as was the case for im-
porting single data set as shown below. The procedure for importing the first file is same
as was the case for single file. On reading the first file the merge file window opens, which
has additional buttons as compared to the merge file window in single data set (shown
in the red rectangular box in figure 2.6(c)). In multiple data fitting, almost any number
of data files could be loaded. The present active number of data is shown next to the
data set in the merge file window. One can switch over from one data file to another by
clicking previous or next. Add and remove buttons are used to add or remove another
file. The addition of curves for different Q scales is performed similar to as mentioned
in the Input single data set introduction.
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(a) Path and format selection for new file (b) Selecting the format of
the file

(c) Merge window for input of multiple data sets. Red box shows the
buttons from which additional data files could be imported. Whereas
the features of merging the data set for different Q scales is similar
to that for importing single data set

Figure 2.6. Procedure for importing data files for multiple data sets
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2.4. Simulating scattering curves

In addition to reading and loading data set, one can also have a realis-
tic view of the experimental scattering data for a known structure by sim-
ulating the scattering profile beforehand to get a feel of the actual experi-
ment scattering profile. The simulation can be performed either for a sin-
gle data set or for multiple data sets using global parameters. To gener-
ate theoretical scattering profile, follow [Calc|Single Data Set...|simulate] or
[Calc|Multiple Data Sets...|simulate], either of them to generate a single data
set or multiple data sets varied by changing the global parameter. The data can be
generated for vast number of form factors and structure factor included in the software.
The simulation is calculated using physically relevant parameters, this is useful to plan
the experiment and to know whether a given concentration and contrast would produce
a measurable signal.

(a) simulation of a single curve (b) simulation of multiple curves

Figure 2.7. Procedure for simulating data profiles for single as well as
multiple data files

2.5. Fitting

SASfit can analyse the data using both model-independent analysis and using a
non-linear least square method to fit models. The model-independent analysis is a
preliminary process of analyzing SAS data and does not require any advanced knowledge
of the system to extract structural information this includes fittings (Guinier, Kratky,
Porod, power-laws, etc.). On the other hand in case of non-linear least square methods
a detailed fitting to the experimental data is performed using a wide variety of form
factors and structure factors. The SASfit model library consists of large number of
such functions, which can be readily used for the analysis. Moreover it can also fit
different size distributions.
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2.5.1. Model Independent Fitting (Integral parameters).
Model independent analysis requires no advanced knowledge about the sample and most
importantly no experimental bias of assumed structure. It includes linearized fitting
(Guinier, Porod and Zimm plot) to extract structural information. Model independent
analysis are performed via [Cals|integral parameters]. In SASfit there are basi-
cally three functions available to do the analysis; they are Guinier, Zimm and Porod
approximations (shown in the blue box in Figure 2.8(b). The number of data points
to be included in the analysis can be accordingly varied and the resulting fit and the
available parameters can be viewed instantaneously. For a large number of data a small
script can be return to automate the process. This is performed by using the lower
section of the integral structural parameters window (shown in red box). Prename indi-
cates a character or string of characters with which all the data file names to be analysed
starts with followed by certain numbers. The number of digits/characters in the filename
could be given in the digits submission box, whereas the start number and the last file
number are provided in their respective submission boxes. The step box indicates the
incremental step of the file names which has to be analysed. The fitted parameters can
be saved in the custom file to be viewed later. Load next file does step by step analysis
of different files, whereas Do all would perform calculations on the entire file list, to be
saved in the custom file for later viewing.

(a) data with fit results (b) entry menu with fitted parameters

Figure 2.8. Integral fit parameters
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A set of valuable size and integrated parameters that can be calculated directly from
the scattering curves I(Q) [17, 90, 18, 102, 65, 37] consists of

Q̃inv =

∞∫
0

Q2I(Q)dQ (scattering invariant) (2.1a)

S

V
=

π

Q̃inv

lim
Q→∞

{
Q4I(Q)

}
(specific surface) (2.1b)

〈RG〉2 = 3

(
− lim

Q→0

{
d[ln I(Q)]

d(Q2)

})
(squared Guinier radius) (2.1c)

〈d〉 =
4

π

∫∞
0
Q2I(Q)dQ

lim
Q→∞

{
Q4I(Q)

} (average intersection length) (2.1d)

〈l〉 =
π

Q̃inv

∞∫
0

QI(Q)dQ (correlation length) (2.1e)

〈A〉 =
2π

Q̃inv

∞∫
0

I(Q)dQ (correlation surface) (2.1f)

〈V 〉 =
2π2

Q̃inv

I(0) (correlation volume, Porod volume) (2.1g)

2.5.2. Model dependent analysis.
2.5.2.1. Modeling a single data set.

For Modeling a SANS data set the SASfit -programm allows to describe experimental
data with an arbitrary number of scattering objects types. Each of them can have a size
distribution, whereby the user can choose over which parameter ai of the form factor
the integration will be performed. For example in case of a spherical shell with a core
radius of R and a shell thickness of ∆R SASfit allows to integrate either over the core
radius x = R or the shell thickness x = ∆R by marking the corresponding parameter
(see option distr in Fig . 2.9(b)). Furthermore an additional structure factor can be
included for each scattering object. Several ways to account for the structure factor have
been implemented like the monodisperse approximation (4.1.1), decoupling approach
(4.1.2), local monodisperse approximation (4.1.3), partial structure factor (4.1.4) and
scaling approximation of partial structure factors (4.1.5). The details are described in
chapter 4.

Implemented size distributions, form factors and structure factors are described in
chapters 3, 4 and 5. Optional an additional smearing of this function with the instrument
resolution function Rav (Q, 〈Q〉) can be activated so that

I(〈Q〉) =

∞∫
0

Rav (Q, 〈Q〉) dσ
dΩ

(Q) dQ (2.2)

A user interface shown in Fig. 2.9 is supplied to choose between the number of
scattering objects and to define parameter for each of them. Next to varying the different
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(a) Menu through which fitting procedure is ini-
tiated

(b) User interface for fitting, containing differ-
ent form factors and structure factor

(c) Tab summarizing the analyzed parameters

Figure 2.9. Menus for fitting a single data set

parameters one can mark those, which one would like to fix or to vary in a fitting
procedure (see option fit in Fig. ??(b)) Model dependent analysis for single files are
performed via [Calc|Single Data Set|Fit...].

2.5.2.2. Modeling multiple data sets.
The multiple data set option allows the user to perform operation on multiple data

file by using common set (global) parameters. This option is especially important in
contrast variation experiments or measurements with polarized neutrons. The global
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(a) Imported multiple data sets (b) Uuser interface for fitting multiple data
files

Figure 2.10. Menus for fitting a simultaneously multiple data sets

fitting helps the user to analyse large number of data which has a similar form or
structure factor however different scaling constant. The data shown in the figure below
is for a spherical monodispersed system both the data profile has identical features,
except that the scaling factor between the two is of a factor of two. The data are called
by the procedure explained in the input multiple data file section. The fitting of the data
is performed by calling the fitting function via [Calc|Multiple Data Sets|Fit...].
The user interface for multiple data fitting has additional feature than to that for single
data fitting, they are pre-factor and global parameters as shown in figure 2.10(b) red
markings.

The procedure for fitting the data set is similar to that mentioned in the earlier sec-
tion. The only difference is to include the global parameters for each function included.
The scattering profile shown in the figure 2.10(a) is for a spherical monodispersed par-
ticle, both the profiles have identical features with a scaling factor of two. The user
interface for fitting shows the following window in figures 2.11. The data set number
shows the active data file, whereas contribution indicates the number of scattering ob-
jects. We have selected the form factor for a spherical particle. In the global parameter
a new variable is produced for both radius and eta (scattering contrast). The pre-factor
is kept constant at 1. A second contribution is added to the data set one by pressing
add. In this case it is a background contribution, a new global parameter is introduced
for it (P3). A similar procedure is done for second data set where the global parameter
for the radius is kept same to that for data set one, whereas new global parameters
are defined for scattering contrast and background. The fitting procedure can then be
started by pressing Run fit. The figures 2.12 show the graphs during the fitting process.
The parameters of fitting for all the contribution can be viewed by pressing parameters
of analytical size distributions (figure 2.12(d)).
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(a) (b)

(c) (d)

Figure 2.11. Different windows showing different controlling parameters
during multiple data fitting.
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(a) (b)

(c) (d)

Figure 2.12. The scattering data profile and the analytical parameters
obtained during the fitting process.
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2.6. Fitting strategies
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2.7. Criteria for goodness-of-fit

All criteria shown below for testing the goodness of a fit should be considered with
caution [10, 81]. When you get data on a SAS instrument the the measured intensities
are measured with some statistical uncertainties. Normally one assumes Poisson
statistics to determine the uncertainty in the counting statistics. The data reduction
software should than perform a proper error propagation analysis for all succeeding
data treatment operations. However, by this procedure only statistical uncertainties
are taken into account. All systematic uncertainties are than hopefully covered during
the data treatment, as fir example background correction, transmission correction etc 12.

2.7.1. chi square test.
The method of least squares is built on the hypothesis that the optimum description of
a set of data is one which minimizes the weighted sum of squares of deviations, between
the data, Iexp(qi) , and the fitting function Ith(qi):

χ2 =
N∑
i=1

(
Iexp(qi)− Ith(qi)

∆I(qi)

)2

(2.3)

As a rule of thumb for chi-square fitting is the statement that a good fit is achieved
when the reduced chi-square equals one. The reduced chi-square value, which equals the
residual sum of square divided by the degree of freedom can be computed by

χ2
ν =

1

N −m

N∑
i=1

(
Iexp(qi)− Ith(qi)

∆I(qi)

)2

=
χ2

N −m
(2.4)

where N is the number of data points and m the number of fit parameters. ν = N −m
is called the ”number of degree of freedom”. The reduced chi-square is closely related
to the variance of the fit s2 by

s2 = χ2
ν

(
1

N

N∑
i=1

1

(∆Iexp
i )2

)−1

(2.5)

In the theory of hypothesis testing χ2 can be used to test for goodness of a fit. The
probability that a random set of N data points would yield a value of χ2 equal or greater
than the measured one is given by

Qfactor = Q

(
N −m

2
,
χ2

2

)
=

Γ
(
N−m

2
, χ

2

2

)
Γ
(
N−m

2

) with Γ (a, x) =

∞∫
x

ts−1e−tdt (2.6)

For a fitting function being a good approximation to the data the experimental value of
χ2
ν should be close to one and the probability Qfactor somewhere between 0.01 and 0.5.

For probability values close to one the fit seems to be too good to be true.
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2.7.2. R-factor.
The crystallographers have introduced another parameter for the goodness of a fit. They
use the R factor [68, 38] as a measure of model quality which is defines as

=

N∑
i=1

|Iexp(qi)− Ith(qi)|

N∑
i=1

|Iexp(qi)|
(2.7)

Theoretical values of R range from zero (perfect agreement of calculated and observed
intensities) to infinity. R factors greater than 0.5 indicate in crystallography very poor
agreement between observed and calculated intensities. Models refining to R < 0.05
are often considered to be good. However, the R factor must always be treated with
caution, only as an indicator of precision and not accuracy. In Crystallography partially
incorrect structures have been reported with R values below 0.1; many imprecise but
essentially correct structures have been reported with higher R values.

In practice, weighted R factors Rw are more often used to track least-squares refine-
ment, since the functions minimized are weighted according to estimates of the precision
of the measured quantity. The weighted residuals are defined as:

Rw =

√√√√√√√√√
N∑
i=1

(
Iexp(qi)− Ith(qi)

∆I(qi)

)2

N∑
i=1

I2
exp(qi)

∆I(qi)

(2.8)
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2.8. Data I/O Formats

2.8.1. Input Format.

SASfit supports a simple ASCII format. Options for reading ASCII data can be
set in the corresponding menu, where one can set an input format and the number of
lines to be skipped at the beginning of the data file. To set an input format one has to
supply a string like ”xyer”. Each line which does not contain valid float numbers are
skipped automatically. Each line further should at least contain as many valid numbers
as the supplied format string characters. That means if the line contains only three
numbers but the format string is 4 or more characters long the line will be ignored.
Separators between numbers can be ”white space”, ”tabulator”, or ”,”. For identifying
the columns the characters and their position in the string are interpreted. x, y and
e stands for the scattering vector Q, scattering intensity I(Q) and its error ∆I(Q),
respectively. r defines the column for a resolution parameter σ. The position of the
character in the string defines which data column is assigned to Q, I(Q), ∆I(Q), and σ.
In case of double occurrence of a character the position of the last one is the significant
position. Any characters not belonging to {x,y,e,r} can be used to skip a column. A
definition string need to contain at least the two characters x and y.

Example 1 (HMI-BerSANS format):

%File

FileName=D0002831.200 FileDate=28-Jun-99 FileTime=11:57:16

Type=SANSDIso Title=IMF

%Counts

2.651E-02, 2.372E+02, 4.650E+00

3.240E-02, 2.170E+02, 2.291E+00

3.829E-02, 1.898E+02, 1.713E+00

4.418E-02, 1.743E+02, 1.479E+00

5.007E-02, 1.528E+02, 1.318E+00

5.596E-02, 1.361E+02, 1.153E+00

...

As the first lines start with a string, they will be automatically ignored. To
interpret the three columns as Q, I(Q), ∆I(Q) the format string should be
simply xyz. The HMI-BerSANS format can also be read in by explicitly
selecting instead of the ”ASCII”-format the ”HMI”-format button in the menu.

Example 2:
d 19 0 0 0 0 0 0 6

0.100000E+01 0.100000E+04 0.000000E+00 0.100000E+01 0.120000E+01

0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 c

teflon instrument tests

1 2.617993E-04 3.700000E+01 4.301163E+00

2 1.062462E-03 6.412500E+01 1.634587E+00

3 2.107973E-03 1.410135E+03 5.207492E+00

4 3.167636E-03 1.752197E+03 4.801586E+00

5 4.189463E-03 7.581771E+02 2.810281E+00

:
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:

45 1.255376E-02 1.486688E+01 2.197023E-01

46 1.360724E-02 1.204012E+01 1.927716E-01

47 1.466810E-02 1.026648E+01 1.679423E-01

A definition string ixye would ignore the leading line number at the beginning
of each data line, but in the present example also the first 3 lines would also be
interpreted as data points. To skip them one has to use the option for skipping
leading lines in a data file. In the above case the number should be set to 3 or
4. As the 4th line is anyway ignore a value of 3 is sufficient to skip non data
points.

Example 3: ILL data files from regrouped treatment (gnnnnnn.eee).

Sample - d corrs TEST prot/deutr. ellipt. chs 44 lines+(Q, I(Q), errI(Q))

ILL SANS D11

d 8303 1 37 1 42 38

d 14 32 0 3 1 c

spol 20-Oct-1995 9:16:09

AvA1 0.0000E+00 AsA2 9.5000E-01 XvA3 1.0000E+00 XsA4 1.0000E+00 XfA5 0.0000E+00

S... 8303 0 1.00E+00 P100 0.5% 221 Sbak 8309 0 2.00E+00 Blank523 193

V... 8301 0 1.00E+00 Hhaps 911

0.0000 ! Theta-0 Detector offset angle

32.5000 ! X0 cms Beam centre

32.5000 ! Y0 cms Beam centre

1.0000 ! Delta-R cms regrouping step

2.5000 ! SD m Sample-detector distance

10.5400 ! Angstroms incident wavelength

5.6000 ! m collimation distance

1.0000 ! concentration

-3. ! ISUM central window sum

1. ! flux monitor counts

180.0000 ! degrees detector sector width

0.0000 ! degrees sector orientation

10.0000 ! % wavelength spread

20.0000 ! mm source slit width x

0.0000 ! mm source slit height y

10.0000 ! mm sample width x

0.0000 ! mm sample height y

10.0000 ! mm detector x pixel size

10.0000 ! mm detector y pixel size

0.0000 ! degrees sample normal/beam

0.0000 ! K sample temperature

0.0000 ! sample transmission

1.0000 ! mm sample thickness

900.0000 ! secs counting time

0.0000 ! reserved

0.0000 ! reserved

0.0000 ! reserved

0.0000 ! reserved

0.0000 ! reserved

0.0000 ! reserved

0.0000 ! reserved

0.0000 ! reserved
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d 37 0 0 0 0 0 0 6

d 0.100000E+01 0.250000E+03 0.000000E+00 0.100000E+01 0.105400E+01

d 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

d 0.000000E+00 0.000000E+00 0.000000E+00 c
2.194656E-03 3.442688E-01 8.329221E-02

5.466116E-03 3.000000E-01 5.008947E-02

8.480323E-03 3.877941E-01 4.232426E-02

1.189216E-02 6.498784E-01 1.519078E-02

1.497785E-02 7.493181E-01 1.173622E-02

...

To read in a regrouped ILL data file one has to use the definition string xye

and secondly one has to skip the first 44 lines in the data file to ignore also the
lines marked with d c. If one does not skip the first 44 lines the marked lines are
interpreted erroneously also as data points. The other lines at the beginning of
the data file are ignored as they do not fulfill the condition that they have 3
columns containing only valid numbers.

2.8.2. Error bar.

In case no error bar is supplied SASfit will try to guess one. To do this an polynomial
yp(Q) of degree p

yp(Q) =

p∑
k=0

ckQ
k (2.9)

is fitted to the data point i and its nth neighbors, i.e. is fitted to 2n + 1 points from
Ii−n(Qi−n) to Ii+n(Qi+n). After the fit χ2

i is calculated

χ2
i =

i+n∑
j=i−n

(Ij(Qj)− yP (Qj))
2 (2.10)

The error bar ∆Ii for Qi is than defined as

∆Ii =

√
χ2
i

2n− p
(2.11)

SASfit is using two nearest neighbors n = 2 and fitting a polynomial of degree p = 2
to it to guess an error bar.

2.8.3. Export Format.

Example for an exported data file:

0.00401571, 3497.47, 90.7282, 0, 0.00401571, 260294, -1, 0,

0.00454087, 3340, 84.9531, 0, 0.00454087, 254548, -1, 0,

0.0050096, 3322.47, 79.6313, 0, 0.0050096, 248833, -1, 0,

0.00552335, 2983.23, 73.7254, 0, 0.00552335, 241949, -1, 0,

0.00598495, 2737.17, 68.4395, 0, 0.00598495, 235226, -1, 0,

0.0065309, 2598.76, 62.3109, 0, 0.0065309, 226647, -1, 0,

0.00706977, 2233.9, 56.4829, 0, 0.00706977, 217551, -1, 0,

0.00764207, 2080.96, 50.6186, 0, 0.00764207, 207264, -1, 0,
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0.00815988, 1882.88, 45.6557, 0, 0.00815988, 197459, -1, 0,

...
...

, , , , 0.0445634, 1535.14, -1, 0,

, , , , 0.0453557, 1473.71, -1, 0,

, , , , 0.0470219, 1340.34, -1, 0,

, , , , 0.0490017, 1192.64, -1, 0,

, , , , 0.0510837, 1055.44, -1, 0,

If one like to export the data of an xy-plot all curves are stored in a single data file.
Each curve will occupy four columns (Q, I(Q), ∆I(Q), σ). If an error ∆I(Q) is not
available, e.g. for theoretical data curves, the corresponding column will be filled with
-1. Similar is valid for the resolution parameter σ which will be set to 0 in case it is
not available. The individual columns are separated by ”,”. If the curve have different
amount of data points the column will be filled with empty space for the missing data.
This comma separated data format has been chosen as it can be imported easily by many
commercial plotting softwares. The drawback of this format is, however, that SASfit

cannot read it correctly, if the individual curves are of different length.



34 2. QUICK START TOUR

2.9. Scattering length density calculator

The SLD calculator is using thermal neutron cross-sections only to calculate
neutron scattering length density. For x-rays the energy dependent scattering co-
efficients f ′ and f ′′ are derived using the theoretical approximation developed by
Cromer and Liberman. This theory gives accurate values far from an absorption
edge but does not account for the effects of neighboring atoms, which can be very
substantial near an absorption edge. Before conducting an anomalous scattering ex-
periment close to an absorption edge it is therefore advisable to determine the ac-
tual scattering behavior of the sample. The x-ray data have been taken from http:

//skuld.bmsc.washington.edu/scatter/AS_periodic.html and those for neutrons
from http://www.ncnr.nist.gov/resources/n-lengths/list.html. The menu in-

Figure 2.13. Input menu for the scattering length density calculator

terface in Fig. 2.13 has for input parameters, the sum formulae of the compound, its
mass density in g/cm3, the x-ray energy in keV and the neutron wave length in nm.
In the compound name non-integer stoichiometry is supported, e.g. H0.2O0.1 and H2O
will calculate the same scattering length density. However, the molecular volume vm and
the molecular weight M of cause depend on such differences. The elements in the com-
pound name are case sensitive. Therefore you have to use SiO2 instead of SIO2. Also
isotopes are handled like C(13) (Carbon-13), H(2) (Deuterium), or O(18) (Oxygen-18).
For Deuterium next to H(2) also D can be used.

Examples of how to format the compound name:

• Magnetite: Fe3O4, 5.15 g/cm3

• Eucryptite: LiAlSiO4, 2.67 g/cm3

• protonated toluene, C7H8, 0.865 g/cm3

• deuterated toluene, C7D8 or C7H(2)8, 0.94 g/cm3

• mixture of 65/35 heavy water/light water, (D2O)0.65(H2O)0.35, 1.065 g/cm3

From the compound name and the density first the molecular weight M , molec-
ular volume vm, and total number of electrons Z are calculated. Together with

http://skuld.bmsc.washington.edu/scatter/AS_periodic.html
http://skuld.bmsc.washington.edu/scatter/AS_periodic.html
http://www.ncnr.nist.gov/resources/n-lengths/list.html
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the tabulated neutron scattering length and tabulated energy dependent scattering
coefficient f ′(E) and f ′′(E) the corresponding coherent neutron scattering length
bc =

∑
i bi, coherent neutron scattering length density ηn,SLD = bc/vm and for x-

rays the complex energy dependent scattering scattering length density ηx,SLD =
(Z − (Z/82.5)2.37 + f ′(E) + ıf ′′(E)) /vm of the compound are calculated.
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2.10. Resolution Function [72]

〈k〉 = 2π/λ (2.12)

〈θ〉 = arcsin(〈Qav/(2〈k〉)) (2.13)

a1 =
r1

L+ l/ cos2(2〈θ〉)
(2.14)

a2 = r2 cos2(2〈θ〉)/l (2.15)

∆β1 =



a1 ≥ a2 :
2r1

L
− r2

2

2r1

cos4(2〈θ〉)
l2L

(
L+

l

cos2(2〈θ〉)

)2

a1 < a2 : 2r2

(
1

L
+

cos2(2〈θ〉)
l

)
− r2

1

2r2

l

L

× 1

cos2(2〈θ〉)
(
L+ l

cos2(2〈θ〉)

)
(2.16)

σW = 〈Q〉∆λ
λ

1

2
√

2 ln(2)
(2.17)

σC1 = 〈k〉 cos(〈θ〉) ∆β1

2
√

2 ln(2)
(2.18)

σD1 = 〈k〉 cos(〈θ〉) cos2(2〈θ〉) D

l 2
√

2 ln(2)
(2.19)

σav = 〈k〉 cos(〈θ〉) cos2(2〈θ〉) ∆D

l 2
√

2 ln(2)
(2.20)

σ =
√
σ2
W + σ2

C1 + σ2
D1 + σ2

av (2.21)

Rav (Q, 〈Q〉) =
Q

σ2
exp

(
−1

2

(
Q2 + 〈Q〉2

)
/σ2

)
I0(Q〈Q〉/σ2) (2.22)

I(〈Q〉) =

∞∫
0

Rav (Q, 〈Q〉) dσ
dΩ

(Q) dQ (2.23)

dσ

dΩ
(Q) =

∞∫
0

N(R)F 2(Q,R) dR (2.24)



CHAPTER 3

Form Factors

The different types of form factors are selected in the different submenus. Below one
finds how they are ordered. The definitions of the individual form factors are defined
below. Under the submenu other functions all form factors under development and
those functions, which are not at all form factors but which have been implemented for
some other purposes are listed.

• Background
• auxiliary and transition functions

– p(r) -> 4 pi r^2 sin(qr)/(qr)

– gamma(r) -> 4 pi sin(qr)/(qr)

• Spheres & Shells (3.1)
– Sphere (3.1.1)
– Spherical Shell i (3.1.2)
– Spherical Shell ii (3.1.3)
– Spherical Shell iii (3.1.4)
– MultiLamellarVesicle (3.1.7)
– RNDMultiLamellarVesicle

– RNDMultiLamellarVesicle2

– BiLayeredVesicle (3.1.5)
– LinShell (7.3.2.1)
– LinShell2 (7.3.2.2)
– ExpShell (7.3.2.3)

• ellipsoidal obj. (3.2)
– Ellipsoid i 3.2.2
– Ellipsoid ii 3.2.1
– EllipsoidalCoreShell 3.2.3
– triaxEllShell1 3.2.4

• polymers & micelles (3.3)
– polymer chains

∗ Gauss (3.3.1)
∗ Gauss2 (3.3.1)
∗ Gauss3 (3.3.1)
∗ GaussPoly (3.3.1)
∗ generalized Gaussian coil (3.3.1.5)
∗ generalized Gaussian coil 2 (3.3.1.6)
∗ generalized Gaussian coil 3 (3.3.1.7)

– polymer stars
∗ BenoitStar (3.3.2)

37
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∗ PolydisperseStar (3.3.3)
∗ Dozier (3.3.4.1)
∗ Dozier2 (3.3.4.2)

– polymer rings
∗ FlexibleRingPolymer (3.3.5)
∗ mMemberedTwistedRing (3.3.6)
∗ DaisyLikeRing (3.3.7)

– spherical & ellipsoidal micelles
∗ SPHERE+Chains(RW) Nagg (3.3.11.2)
∗ SPHERE+Chains(RW) Rc (3.3.11.2)
∗ SPHERE+Chains(RW) (3.3.11.2)
∗ SPHERE+Chains(SAW) Nagg

∗ SPHERE+Chains(SAW) Rc

∗ SPHERE+Chains(SAW)

∗ SPHERE+R^-a Nagg (3.3.11.8)
∗ SPHERE+R^-a Rc (3.3.11.8)
∗ SPHERE+R^-a (3.3.11.8)
∗ SPHERE smooth interface+R^-a Nagg

∗ SPHERE smooth interface+R^-a Rc

∗ ELL+Chains(RW) Nagg (3.3.11.3)
∗ ELL+Chains(RW) Rc (3.3.11.3)
∗ ELL+Chains(RW) (3.3.11.3)
∗ SphereWithGaussChains

∗ BlockCopolymerMicelle

– cylindrical & rod-like micelles
∗ CYL+Chains(RW) Nagg (3.3.11.4)
∗ CYL+Chains(RW) Rc (3.3.11.4)
∗ CYL+Chains(RW) (3.3.11.4)
∗ WORM+Chains(RW) nagg (3.3.11.5)
∗ WORM+Chains(RW) Rc (3.3.11.5)
∗ WORM+Chains(RW)(3.3.11.5)
∗ ROD+Chains(RW) nagg (3.3.11.6)
∗ ROD+Chains(RW) Rc (3.3.11.6)
∗ ROD+Chains(RW) (3.3.11.6)
∗ ROD+R^-a nagg (3.3.11.9)
∗ ROD+R^-a Rc (3.3.11.9)
∗ ROD+R^-a (3.3.11.9)
∗ ROD+Exp nagg

∗ ROD+Exp Rc

∗ ROD+Exp

– local planar micelles (sheets, ULV)
∗ DISC+Chains(RW) nagg

∗ DISC+Chains(RW) Lc

∗ DISC+Chains(RW)

∗ SphULV+Chains(RW) nagg

∗ SphULV+Chains(RW) tc
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∗ SphULV+Chains(RW)

∗ EllULV+Chains(RW) nagg

∗ EllULV+Chains(RW) tc

∗ EllULV+Chains(RW)

∗ CylULV+Chains(RW) nagg

∗ CylULV+Chains(RW) tc

∗ CylULV+Chains(RW)

– wormlike structures
∗ WormLikeChainEXV (3.3.9)
∗ KholodenkoWorm (3.3.10)

• cluster obj. (3.5)
– Fisher-Burford (3.5.1)
– MassFractExp(3.5.1)
– MassFractGauss (3.5.1)
– Aggregate (Exp(-x^a) Cut-Off) (3.5.1)
– Aggregate (OverlapSph Cut-Off) (3.5.1)
– DLCAggregation (3.5.1)
– RLCAggregation (3.5.1)
– MassFractOverlappingSph (3.5.1)
– StackDiscs (3.5.2)
– DumbbellShell (3.5.3)
– two attached spheres

– DoubleShellChain (3.5.4)
– TetrahedronDoubleShell (3.5.5)

• non-particular structures
– OrnsteinZernike (3.4.4)
– BroadPeak (3.4.5)
– TeubnerStrey (3.4.1)
– DAB (3.4.2)
– Spinodal (3.4.3)
– BeacaugeExpPowLaw (3.3.8)
– BeacaugeExpPowLaw2 (3.3.8)
– Guinier 3.4.6

• cylindrical obj. (3.6)
– Disc (3.6.1)
– Rod (3.6.2)
– EllCylShell

– PorodCylinder (3.6.5)
– LongCylinder (3.6.3)
– FlatCylinder (3.6.4)
– Cylinder (3.6.6)
– LongCylShell (3.6.7)
– CylShell1 (3.6.7)
– CylShell2 (3.6.7)
– ellCylShell1 (3.6.8)
– ellCylShell2 (3.6.8)
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– alignedCylShell

– partly aligned CylShell

– Torus (3.6.11)
– anisotropic obj.

∗ Pcs(Q) for planar obj.
· Pcs:homogenousXS (3.7.2.1)
· Pcs:TwoInfinitelyThinPlates (3.7.3)
· Pcs:LayeredCentroSymmetricXS(3.7.4)
· Pcs:BiLayerGauss (3.7.5)
· Pcs:Plate+Chains(RW)

∗ Pcs(Q) for cylindrical obj.
· Pcs:homogeneousXS
· Pcs:CylindricalShell
· Pcs:Rod+Chains(RW)
· Pcs:ellCylSh

• plane obj.
– homogenousXS (3.7.2.1)
– SphSh+SD+homoXS

– EllSh+SD+homoXS

– EllSh+SD+homoXS(S)

– CylSh+SD+homoXS

– Disc+homoXS

– TwoInfinitelyThinPlates (3.7.3)
– LayeredCentroSymmetricXS (3.7.4)
– BiLayerGauss (3.7.5)

• sheared objects
– ShearedCylinder (3.8.1)
– ShearedCylGauss (3.8.3)

• magnetic objects (3.9)
– MagneticShellPsi (3.9.1.3)
– MagneticShellAniso (3.9.1.1)
– MagneticShellCrossTerm (3.9.1.2)
– SuperparamagneticFFpsi (3.9.2.1)
– SuperparamagneticFFAniso (3.9.2.2)
– SuperparamagneticFFIso (3.9.2.3)
– SuperparamagneticFFCrossTerm (3.9.2.4)

• Mie FF for SLS (3.10)
– MieSphere (3.10.1)
– MieShell (3.10.2)

• Peaks (6)
– Amplitude Functions

∗ Beta (Amplitude) (6.1.1)
∗ Chi-squared (Amplitude) (6.2.1)
∗ Erfc (Amplitude) (6.3.1
∗ Error (Amplitude) (6.4.1)
∗ exponentially modified Gaussian (Amplitude) (6.5.1)
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∗ Extreme Value (Amplitude) (6.6.1)
∗ F-variance (Amplitude) (6.7.1)
∗ Gamma (Amplitude) (6.8.1)
∗ Gaussian (Amplitude) (6.9.1)
∗ Gaussian-Lorentzian cross product (Amplitude) (6.10.1)
∗ Gaussian-Lorentzian sum (Amplitude) (6.11.1)
∗ generalized Gaussian 1 (Amplitude) (6.12.1)
∗ generalized Gaussian 2 (Amplitude) (6.13.1)
∗ Giddings (Amplitude) (6.14.1)
∗ Inverted Gamma (Amplitude) (6.17.1)
∗ Kumaraswamy (Amplitude) (6.18.1)
∗ Laplace (Amplitude) (6.20.1)
∗ Logistic (Amplitude) (6.21.1)
∗ LogLogistic (Amplitude) (6.22.1)
∗ LogNormal, 4 parameters (Amplitude) (6.23.2)
∗ LogNormal (Amplitude) (6.24.1)
∗ Lorentzian (Amplitude) (6.25.1)
∗ Pearson IV (Amplitude) (6.27.1)
∗ Pearson VII (Amplitude) (6.28.1)
∗ pulse (Amplitude) (6.29.1)
∗ pulse with 2nd width (Amplitude) (6.30.1)
∗ pulse with power term (Amplitude) (6.31.1)
∗ Student-t (Amplitude) (6.32.1)
∗ Voigt (Amplitude) (6.33.1)
∗ Weibull (Amplitude) (6.33.4)

– Area Functions
∗ Beta (Area) (6.1.2)
∗ Chi-squared (Area) (6.2.2)
∗ Erfc (Area) (6.3.2
∗ Error (Area) (6.4.2)
∗ exponentially modified Gaussian (Area) (6.5.2)
∗ Extreme Value (Area) (6.6.2)
∗ F-variance (Area) (6.7.2)
∗ Gamma (Area) (6.8.2)
∗ Gaussian (Area) (6.9.2)
∗ Gaussian-Lorentzian cross product (Area) (6.10.2)
∗ Gaussian-Lorentzian sum (Area) (6.11.2)
∗ generalized Gaussian 1 (Area) (6.12.2)
∗ generalized Gaussian 2 (Area) (6.13.2)
∗ Giddings (Area) (6.14.2)
∗ Haarhoff - Van der Linde (Area) (6.15)
∗ Half Gaussian Modified Gaussian (Area) (6.16)
∗ Inverted Gamma (Area) (6.17.2)
∗ Kumaraswamy (Area) (6.19)
∗ Laplace (Area) (6.20.2)
∗ Logistic (Area) (6.21.2)
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∗ LogNormal, 4 parameters (Area) (6.23.2)
∗ LogNormal (Area) (6.24.2)
∗ Lorentzian (Area) (6.25.2)
∗ Pearson IV (Area) (6.27.2)
∗ Pearson VII (Area) (6.28.2)
∗ pulse (Area) (6.29.2)
∗ pulse with 2nd width (Area) (6.30.2)
∗ pulse with power term (Area) (6.31.2)
∗ Student-t (Area) (6.32.2)
∗ Voigt (Area) (6.33.2)
∗ Weibull (Area) (6.33.5)

• other functions
– Langevin
– DoubleShell withSD
– SuperparStroboPsi
– SuperparStroboPsi2
– SuperparStroboPsiSQ
– SuperparStroboPsiBt1
– SuperparStroboPsiLx
– SuperparStroboPsiL2x
– DLS Sphere RDG
– Robertus1
– JülichMicelle
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3.1. Spheres & Shells

3.1.1. Sphere.

Figure 3.1. Sphere with diameter 2R

ISphere(Q,R) = K2(Q,R,∆η) (3.1a)

with

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.1b)

The forward scattering for Q = 0 is given by

lim
Q=0

ISphere(Q,R) =

(
4

3
πR3∆η

)2

Input Parameters for model Sphere:

R: radius of sphere R
- - -: not used
- - -: not used
eta: scattering length density difference between particle and matrix ∆η

Note:

• The parameters param.p[1] and param.p[2] are not used.
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Figure 3.2. Scattering intensity of spheres with radii R = 10nm and
R = 20nm. The scattering length density contrast is set to 1.
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3.1.2. Spherical Shell i.

Figure 3.3. Spherical Shell i

This implementation of a spherical shell is parametrised with an inner radius R2 and
outer radius R1. The scattering contrast relative to the matrix of the core is µ∆η and
the one of the shell ∆η.

IShell1(Q,R1, R2,∆η, µ) = [K(Q,R1,∆η)−K(Q,R2,∆η(1− µ))]2 (3.2)

with

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.3)

The forward scattering for Q = 0 is given by

lim
Q=0

IShell1(Q,R1, R2,∆η, µ) =

(
4

3
π∆η

[
R3

1 −R3
2(1− µ)

])2

Input Parameters for model Spherical Shell i:

R1: overall radius of spherical shell R1

R2: radius of core R2

eta: scattering length density difference between shell and matrix ∆η
mu: scattering length density difference between core and matrix relative to the

shell contrast µ

Note:

None
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Figure 3.4. Scattering intensity of spherical shell with outer radius of
R1 = 14nm and inner radius of R2 = 11.2nm. The scattering length
density contrast the shell is set to 1 and the one of the core to -1, -0.5,
and 2.
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3.1.3. Spherical Shell ii.

Figure 3.5. Spherical Shell ii

This implementation of a spherical shell is parametrised with an outer radius R and
an inner radius νR. The scattering contrast relative to the matrix of the core is µ∆η
and the one of the shell ∆η.

IShell2(Q,R, ν,∆η, µ) = (K(Q,R,∆η)−K(Q, νR,∆η(1− µ)))2 (3.4)

with

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.5)

The forward scattering for Q = 0 is given by

lim
Q=0

IShell2(Q,R,R,∆η, µ) =

(
4

3
π∆η

[
R3 − ν3R3(1− µ)

])2

Input Parameters for model Spherical Shell ii:

R: overall radius of spherical shell R
nu: the radius of the core is only the fraction ν of the overall radius R
eta: scattering length density difference between shell and matrix ∆η
mu: scattering length density difference between core and matrix relative to the

shell contrast µ

Note:

None
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Figure 3.6. Scattering intensity of spherical shell with outer radius of
R = 14nm and inner radius of νR = 11.2nm. The scattering length
density contrast the shell is set to 1 and the one of the core to -1, -0.5,
and 2.



3.1. SPHERES & SHELLS 49

3.1.4. Spherical Shell iii.

Figure 3.7. Spherical Shell iii

This implementation of a spherical shell is parametrised with an inner radius R and
a shell thickness ∆R. The scattering contrast relative to the matrix of the core is ∆η1

and the one of the shell ∆η2.

IShell3(Q,R,∆R,∆η1,∆η2) = [K(Q,R + ∆R,∆η2)−K(Q,R,∆η2 −∆η1)]2

(3.6)

with

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.7)

The forward scattering for Q = 0 is given by

lim
Q=0

IShell3(Q,R,∆R,∆η1,∆η2) =

(
4

3
π
[
(R + ∆R)3∆η2 −R3(∆η2 −∆η1)

])2

Input Parameters for model Spherical Shell iii:

R: radius of core R
dR: thickness of the shell ∆R
eta1: scattering length density difference between core and matrix ∆η1

eta2: scattering length density difference between shell and matrix ∆η2

Note:

None
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Figure 3.8. Scattering intensity of spherical shell with core radius of
R = 11.2nm and shell thickness of ∆R = 2.8nm. The scattering length
density contrast the shell is set to 1 and the one of the core to -1, -0.5,
and 2.
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3.1.5. Bilayered Vesicle.

Figure 3.9. BiLayeredVesicle

IBLV(Q) =

(
+K(Q,Rc, ηsol − ηt) +K(Q,Rc + tt, ηt − ηh) (3.8)

+K(Q,Rc + tt + th, ηh − ηt) +K(Q,Rc + 2tt + th, ηt − ηsol)
)2

with

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.9)

Input Parameters for model BilayeredVesicle:

R c: radius of core Rc which consists of solvent
t h: thickness of outer part of bilayer (in contact with solvent, head group) th
t t: thickness of inner part of bilayer (tail group) tt
eta sol: scattering length density of solvent ηsol

eta h: scattering length density of outer part of bilayer ηh

eta t: scattering length density of inner part of bilayer ηt

Note:

None
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Figure 3.10. Scattering intensity of a bilayered vesicle. The scatter-
ing intensity has been calculated with a lognormal [LogNorm(N = 1, σ=
0.05, p=1, R=30)] size distribution for the vesicle radius Rc.



3.1. SPHERES & SHELLS 53

3.1.6. Multi Lamellar Vesicle.

Figure 3.11. MultiLamellarVesicle

IMLV(Q) =

(
n−1∑
i=0

[
K(Q,Rc + itsh + itsol, ηsol − ηsh)

+K(Q,Rc + (i+ 1)tsh + itsol, ηsh − ηsol)
])2

(3.10)

with

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.11)

Input Parameters for model MultiLamellarVesicle:

R c: radius of core Rc which consists of solvent
t sh: surfactant layer thickness tsh
t sol: thickness of solvent layer tsol

eta sh: scattering length density of surfactant layer ηsh

eta sol: scattering length density of solvent ηsol

n: total number of surfactant layers n

Note:

None
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Figure 3.12. Scattering intensity of a multilamellar vesicle. The scatter-
ing intensities has been calculated for a&b) a distribution of the core radius
Rc by

∫
LogNorm(Rc;N = 1, σ= 0.3, p= 1, R= 10)I(q, Rc) dRc and c) for

a distribution of the distances between the lamellars
∫

LogNorm(tsol;N=
1, σ=0.3, p=1, R=10)I(q, tsol) dtsol.
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3.1.7. RNDMultiLamellarVesicle.

Figure 3.13. randomMultiLamellarVesicle

IRndMLV(Q) = ∆η2

N∑
i=1

F 2
i (q, Ri, tsh,i)

+ ∆η2

N∑
i<j

2Fi(q, Ri, tsh,i)Fj(q, Rj, tsh,j)
sin qrij
qrij

(3.12)

with

rij = |Ri −Rj| (3.13a)

Fi(q, Ri, tsol,i) = K(q, Ri + tsol,i,∆η)−K(q, Ri,∆η) (3.13b)

K(q, R,∆η) =
4

3
πR3∆η 3

sin qR− qR cos qR

(qR)3
(3.13c)

R1 = ranlognormal (log(Rc), σRc) (3.14a)

∆Ri = rangaussian (σtsol) (3.14b)

Ri = Ri−1 + tsh,i−1 + ∆Ri (3.14c)

Ri = Ri randir,3Dranuniform ∆tsol (3.14d)

Input Parameters for model RNDMultiLamellarVesicle:
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t sh: average surfactant layer thickness tsh
s sh: Gaussian thickness distribution of surfactant layer with a width of σsh

R c: average radius of core Rc which consists of solvent
s c: lognormal size distribution of core radius Rc with a width of σc
n: average number of surfactant layers n
s n: lognormal distribution of the number of surfactant layers with a width of σn
t sol: average thickness of solvent layer tsol

s sol: lognormal thickness distribution of solvent layer with a width of σsol

Deta sh: scattering length density contrast ∆η between surfactant layer and sol-
vent

Note:

The number of Monte Carlo iterations can be set via the menu
[Options|Customize...]

Figure 3.14. Scattering intensity of a multilamellar vesicle where sev-
eral distribution of parameters within a single vesicle are calculated via a
Monte Carlo algorithm. .
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3.1.8. Vesicle with aligned flat capped ends [52, 53].

Figure 3.15. Sketch of a vesicle with horizontally aligned flat capped
ends perpendicular to the incoming neutron beam

The shape of this form factor consist of spherical vesicle containing to flat domains.
The flat thought to be aligned in a horizontal magnetic field perpendicular to the in-
coming neutron beam. The size of the domains are characterized by the angles θ1 and
theta2. The thicknesses tc1 and tc2 can be different than the thickness tsh of the spherical
part of the vesicles. The same hold for the scattering length densities ηc1, ηc2 and ηsh.
The form factor Fcv(Q) of this object can be calculated by performing the Fourier trans-
formation of the scattering length density in separate steps. First one calculates the
Fourier transformation of a sphere FcSph with flat capped ends on each side in cylinder
coordinates.

FcSph(Q,R, ψ, θ1, θ2,∆η) = ∆η

R cos θ1∫
−R cos θ2

dz

√
R2−z2∫
0

dρ

2π∫
0

dφ eıQ·r ρ (3.15a)

with Q = Q

 0
sinψ
cosψ

 and r =

 ρ cosφ
ρ sinφ
z

 (3.15b)

The form factor of vesicle Fcv(Q) with a layer thickness of tsh can than be calculated by

Fcv(Q,R, tsh, θ1, θ2,∆ηsh) = + FcSph(Q,R + tsh,Θ1,Θ2,∆ηsh)

− FcSph(Q,R, θ1, θ2,∆ηsh) (3.16a)
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with

Θ1 = arcsin

(
Rc1

R + tsh

)
, Rc1 = R sin (θ1) , (3.16b)

Θ2 = arcsin

(
Rc2

R + tsh

)
, Rc2 = R sin (θ2) . (3.16c)

As the flat capped ends are allowed to have independent thicknesses tc1, tc2 and scattering
length densities η1, η2 the scattering amplitude contribution of the flat capped ends,
which have the shape of a disc, need to be corrected. Their contribution can be calculated
by

Fc(Q,R, θ1, θ2, . . . ) = Fc1(Q,R, θ1,∆ηc1)− Fd1(Q,R, td1,∆ηsh)

+ Fc2(Q,R, θ2,∆ηc2)− Fd2(Q,R, td2,∆ηsh)

= ∆ηc1

lc1+tc1∫
lc1

dz

Rc1∫
0

dρ

2π∫
0

dφ eıQ·r ρ−∆ηsh

lc1+td1∫
lc1

dz

Rc1∫
0

dρ

2π∫
0

dφ eıQ·r ρ

+ ∆ηc2

−lc2∫
−(lc2+tc2)

dz

Rc2∫
0

dρ

2π∫
0

dφ eıQ·r ρ−∆ηsh

−lc2∫
−(lc2+td2)

dz

Rc2∫
0

dρ

2π∫
0

dφ eıQ·r ρ

(3.17)

with

∆ηsh = ηsh − ηsol, ∆ηc1 = η1 − ηsol, ∆ηc2 = η2 − ηsol (3.18a)

lc1 = R cos θ1, lc2 = R cos θ2 (3.18b)

Rc1 = R sin θ1, Rc2 = R sin θ2 (3.18c)

td1 =

√
(R + tsh)2 −R2

c1 −
√
R2 −R2

c1 (3.18d)

td2 =

√
(R + tsh)2 −R2

c2 −
√
R2 −R2

c2 (3.18e)

(3.18f)

The solution of the integrals in eq. 3.15a and 3.17 are

FcSph(Q,R, ψ, θ1, θ2,∆η) = ∆η

R cos θ1∫
−R cos θ2

dz

√
R2−z2∫
0

dρ

2π∫
0

dφ eıQ·r ρ

∆η

R cos θ1∫
−R cos θ2

dz exp (ıQz cosψ) 2π
(
R2 − z2

) J1

(
Q
√
R2 − z2 sinψ

)
Q
√
R2 − z2 sinψ

(3.19a)
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and

Fci,di(Q,Rci,di , ψ,∆η) = ∆η

b∫
a

dz

Rci∫
0

dρ

2π∫
0

dφ eıQ·r ρ

= 4πR
ı (exp (ıaQ cosψ)− exp (ıbQ cosψ)) J1 (QR sinψ)

sin (2ψ)Q2
(3.19b)

whereby J1 the regular cylindrical Bessel function of first order. The overall scattering
intensity IalignedVes(Q,ψ, . . . ) is finally given by

IalignedVes(Q,ψ, . . . ) = |Fcv(Q,R, ψ, tsh, θ1, θ2,∆ηsh) + Fc(Q,R, ψ, θ1, θ2, . . . )|2

(3.20)

Input Parameters for the models of MagneticFieldAlignedVesicle:

Rsh: radius of spherical vesicle shell
theta1: angle to describe size of first capped side
theta2: angle to describe size of second capped side
t sh: thickness of spherical vesicle shell
t c1: thickness of first flat capped side
t c2: thickness of second flat capped side
eta sh: scattering length density of spherical vesicle shell
eta 1: scattering length density of first capped side
eta 2: scattering length density of second capped side
eta sol: scattering length density of solvent

Note:

None
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3.2. Ellipsoidal Objects

3.2.1. Ellipsoid with two equal semi-axis R and semi-principal axes νR.

Figure 3.16. Ellipse, showing major and minor axes and parameters a
and b

An ellipsoid is a quadric surface in three dimensions obtained by rotating an ellipse
about one of its principal axes. Three particular cases of an ellipsoid are:

• If the ellipse is rotated about its major axis, the surface is a prolate spheroid.
• If the ellipse is rotated about its minor axis, the surface is an oblate spheroid.
• If the generating ellipse is a circle, the surface is a sphere.

(a) oblate spheroid (ν < 1) (b) prolate spheroid (ν > 1)

Figure 3.17. A spheroid is an ellipsoid having two equal equatorial semi-
axes. If the equatorial semi-axis are larger than the principal axis the
spheroid becomes oblate (a), if they are smaller it becomes prolate (b)
and if they are equal the spheroid becomes a perfect sphere



3.2. ELLIPSOIDAL OBJECTS 61

Iii(Q,R, ν) =

(
4

3
πR3∆η

)2
π
2∫

0

K2
(
Q,R

√
ν2 cos2 Θ + sin2 Θ

)
sin Θ dΘ (3.21)

with lim
Q=0

Iii(Q,R, ν) =

(
4

3
πνR3∆η

)2

Input Parameters for model Ellipsoid ii:

R: radius of the rotational axes
nu: ratio between radius of the semi-principle axes and equatorial axis. Values of
ν < 1 describe a oblate ellipsoid, a value of ν = 1 a sphere, and ν > 1 a prolate
ellipsoid.

Figure 3.18. form factor of an ellipsoid with axis R, R and νR.
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3.2.2. Ellipsoid with two equal equatorial semi-axis R and volume V .

Ii(Q,R, ν) = (V∆η)2

π
2∫

0

K2
(
Q,R

√
ν2 cos2 Θ + sin2 Θ

)
sin Θ dΘ (3.22)

with

ν =
V

R3

3

4π
so that V =

4

3
πνR3

and lim
Q=0

Ii(Q,R, ν) = (V∆η)2

Input Parameters for model Ellipsoid i:

R: radius of the rotational axes
V: total volume of the ellipsoid.

Figure 3.19. form factor of an ellipsoid with axis R, R and 3

√
V 3

4π
.
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3.2.3. Ellipsoidal core shell structure.

Figure 3.20.

IECSh(Q) =
〈
F 2(Q, µ)

〉
=

1∫
0

[F (Q, µ)]2 dµ (3.23)

〈F (Q, µ)〉2 =

 1∫
0

F (Q, µ)dµ

2

(3.24)

F (Q, µ) = (ηc − ηsh)Vc

[
3j1(xc)

xc

]
+ (ηsh − ηsol)Vt

[
3j1(xt)

xt

]
j1(x) =

sin(x)− x cos(x)

x2

xc = Q
√
a2µ2 + b2(1− µ2)

xc = Q
√

(a+ t)2µ2 + (b+ t)2(1− µ2)

Vc =
4

3
πab2

Vt =
4

3
π(a+ t)(b+ t)2

ηc : scattering length density of core

ηsh : scattering length density of shell

ηsol : scattering length density of solvent

a : semi-principal axes of elliptical core

b : equatorial semi-axis of elliptical core

t : thickness of shell

Vc : volume of core

Vt : total volume of core along with shell
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Input Parameters for model EllipsoidalCoreShell:

a: semi-principal axes of elliptical core a
b: equatorial semi-axis axes of elliptical core b
t: thickness of shell t
eta c: scattering length density of core ηc

eta sh: scattering length density of shell ηsh

eta sol: scattering length density of solvent ηsol

Figure 3.21. form factor of an ellipsoidal core shell a, b, b and t.
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3.2.4. triaxial ellipsoidal core shell structure.

Figure 3.22. triaxial ellipsoidal core shell structure

ItriaxEllSh(Q) =

1∫
0

1∫
0

dx dy K2
sh(Q,R,Rt) (3.25)

K(QR) = 3
sinQR−QR cosQR

(QR)3
(3.26)

Ksh(Q,R,Rt) = (ηc − ηsh)K(QR) + (ηsh − ηsol)K(QRt) (3.27)

R2 =
[
a2 cos2 (πx/2) + b2 sin2 (πx/2)

]
(1− y2) + c2y2

R2
t =

[
(a+ t)2 cos2 (πx/2) + (b+ t)2 sin2 (πx/2)

]
(1− y2) + (c+ t)2y2

Vc =
4

3
πabc

Vt =
4

3
π(a+ t)(b+ t)(c+ t)

ηc : scattering length density of core

ηsh : scattering length density of shell

ηsol : scattering length density of solvent

a : semi-axes of elliptical core

b : semi-axes of elliptical core

c : semi-axes of elliptical core

t : thickness of shell

Vc : volume of core

Vt : total volume of core along with shell
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Input Parameters for model triaxEllShell1:

a: semi-axes of elliptical core a
b: semi-axes of elliptical core b
c: semi-axes of elliptical core c
t: thickness of shell t
eta c: scattering length density of core ηc

eta sh: scattering length density of shell ηsh

eta sol: scattering length density of solvent ηsol

Figure 3.23. Form factor of an triaxial ellipsoidal core shell with semi
axis a, b and c and a shell thickness t.
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3.3. Polymers and Micelles

3.3.1. Gaussian chain.

Figure 3.24. The underlying model for a polymer chain is an isotropic
random walk on the euclidean lattice Z3. This picture shows three different
walks after 10 000 unit steps, all three starting from the origin.

Consider a flexible polymer coil where each monomer located at a distance Rm its
scattering field amplitude is given by

F (q, t) =
N∑
m=1

e−ıq·Rm(t). (3.28)

The scattering intensity averaged over all molecule configurations reads〈
|F (q)|2

〉
=
∑
m,n

〈
e−ıq·(Rm−Rn)

〉
(3.29)
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As the monomer segments Rm−Rn are Gaussian distributed the averages 〈· · · 〉 can be
written as〈

e−ıq·(Rm−Rn)
〉

= e
q2

6 〈(Rm−Rn)2〉 (3.30a)

= e−
q2b2

6
|m−n|2ν (3.30b)

Here b is the statistical segment length and the contour length L equals L = Nb. The
average of the segment inter-distances squares is kept in the general form〈

(Rm −Rn)2〉 = b2|m− n|2ν . (3.31)

ν is the excluded volume parameter from the Flory mean field theory12 of polymer
solutions. The radius of gyration RG is given by

R2
G =

1

2N2

N∑
m,n

〈
(Rm −Rn)2〉 (3.32a)

=
1

2N2

N∑
m,n

b2|m− n|2ν (3.32b)

=
b2

N

N∑
k

(
1− k

N

)
k2ν (3.32c)

=
b2

(2ν + 1) (2ν + 2)
N2ν (3.32d)

Three cases are relevant:

(1) Self-avoiding walk corresponds to swollen chains with ν = 3/5, for which R2
G =

25
176
b2N6/5.

(2) Pure random walk corresponds to chains in Θ-conditions (where solvent-solvent,
monomer-monomer and solvent-monomer interactions are equivalent) with ν =
1/2, for which R2

G = 1
6
b2N .

(3) Self attracting walk corresponds to collapsed chains with ν = 1/3, for which
R2
G = 9

40
b2N2/3.

Using the general identity

N∑
i,j

y(|i− j|) = N + 2
N∑
k=1

(N − k)y(k) (3.33)

the form factor reads

P (q) =
1

N2
|F (q)|2 =

1

N2

{
N + 2

N∑
k=1

(N − k)e−
q2b2

6
k2ν

}
(3.34)

1P.J. Flory, ”Statistical Mechanics of Chain Molecules”, Interscience Publishers (1969)
2Boualem Hammouda, the SANS toolbox.pdf

http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
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Going to the continuous limit (N � 1), one obtains:

P (q) = 2

1∫
0

dx (1− x)e−
q2b2

6
N2νx2ν

(3.35a)

=
U

1
2ν Γ
(

1
2ν

)
− Γ

(
1
ν

)
− U 1

2ν Γ
(

1
2ν
, U
)

+ Γ
(

1
ν
, U
)

νU1/ν
(3.35b)

with the modified variable

U =
q2b2N2ν

6
= (2ν + 1) (2ν + 2)

q2R2
G

6
(3.36)

and the unnormalized incomplete Gamma Function Γ(a, x) =
∫∞
x

dt ta−1 exp(−t) for a

real and x ≥ 0 and the Gamma function Γ(a) = Γ(a, 0) =
∫∞

0
dt ta−1 exp(−t). Polymer

chains follow Gaussian statistics in polymer solutions: they are swollen in good solvents
ν = 3/5, are thermally relaxed in ”theta”-solvents ν = 1/2 and partially precipitate in
poor solvents ν = 1/3. The familiar Debye function is recovered when ν = 1/2. The
asymptotic limit at large q-values of the generalized Gaussian chain is dominated by the

1

νU
1
2ν

Γ
(

1
2ν

)
term which varies like U−1/(2ν) ∼ q−1/ν . For ν = 1 we get the limit of an

infinitesimal thin rod and for ν = 1/4 a compact object with a Porod law of q−4.
SASfit has implemented the generalized form of a Gaussian (generalized

Gaussian coil) coil and the standard Debye formula Gauss. In both cases three version
are implemented which only differ in their parametrization of the forward scattering. In
case of the the Debye-formula also the polydisperse GaussPoly is implemented.

Gauss

3.3.1.1. Gauss [23].
Flexible polymer chains which are not selfavoiding and obey Gaussian statistics. Debye
(1947) has calculated the form factor of such chains:

IGauss(q) = I02
exp(−u) + u− 1

u2
(3.37)

u = q2R2
g (3.38)

Input Parameters for model Gauss:

Rg: radius of gyration Rg

I0: forward scattering I0 for q = 0

Gauss

3.3.1.2. Gauss2 [23].
This form factor differs only by the parametrization for the forward scattering I0 =
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(bp − V ηs)
2 from the Debye formula in eq. 3.37

IGauss2(q) = β22
exp(−u) + u− 1

u2
(3.39)

u = q2R2
g

β = bp − V ηs,

where bp is the scattering length of a polymer molecule of molecular volume V dissolved
in a solvent of scattering length density ηs from which the excess scattering length of
a polymer molecule β can be calculated. Combining this form factor with a Delta

size distribution 5.1 is needed to scale the scattering intensity. With proper values for
the form factor the parameter N of the Delta-distribution yields the particle number
density.

Input Parameters for model Gauss2:

Rg: radius of gyration Rg

b p: scattering length of polymer bp in [cm]
V: molecular volume of a single polymer molecule V in [cm3]
eta s: scattering length density of solvent ηs in [cm−1]

Gauss

3.3.1.3. Gauss3 [23].
This form factor differs only by the parametrization for the forward scattering I0 =
(bp − Mw

Naρp
ηs)

2 from the Debye formula in eq. 3.37

IGauss3(q) = β22
exp(−u) + u− 1

u2
(3.40)

with

u = q2R2
g

β = bp − V ηs

V =
Mw

Naρp
Na = Avogadro number

Input Parameters for model Gauss3:

Rg: radius of gyration Rg

b p: scattering length of polymer bp in [cm]
M w: molecular weight of polymer Mw in [g/mol]
rho p: mass density of polymer ρp in [g cm−3]
eta s: scattering length density of solvent ηs in [cm−1]

Gauss
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Figure 3.25. Scattering function of Gaussian coils plotted for several
radii of gyration.

3.3.1.4. Polydisperse flexible polymers with Gaussian statistics [74].
Polydispersity has been included in terms of a SchulzZimm mass distribution by Zimm
(1948) [109] and Greschner (1973) [35]

IGaussPoly(q) = I02
(1 + Ux)−1/U + x− 1

(1 + U)x2
(3.41)

x = q2R2
g/(1 + 2U)

U =
Mw

Mn

− 1

Input Parameters for model GaussPoly:

Rg: radius of gyration Rg

M w: weight averaged molecular weight Mw

M n: number averaged molecular weight Mn

I0: forward scattering I0 for q = 0

Gauss
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Figure 3.26. Scattering function of polydisperse Gaussian coil plotted
for several ratios of Mw/Mn.

3.3.1.5. generalalized Gaussian coil [39].
The scattering function for the generalized Gaussian coil is according to eq. 3.35b

IgGc(q) = I0

U
1
2ν Γ
(

1
2ν

)
− Γ

(
1
ν

)
− U 1

2ν Γ
(

1
2ν
, U
)

+ Γ
(

1
ν
, U
)

νU1/ν
(3.42)

with the modified variable

U = (2ν + 1) (2ν + 2)
q2R2

G

6
(3.43)

and the unnormalized incomplete Gamma Function Γ(a, x) =
∫∞
x

dt ta−1 exp(−t) and

the Gamma function Γ(a) = Γ(a, 0) =
∫∞

0
dt ta−1 exp(−t). ν is the excluded volume

parameter from the Flory mean field theory and typical values for them are

ν = 1/3: partially precipitate in poor solvents
ν = 1/2: thermally relaxed in ”theta”-solvents
ν = 3/5: swollen in good solvents

Input Parameters for model generalized Gaussian coil:

Rg: radius of gyration Rg

nu: excluded volume parameter ν ∈ [1/2; 1]
I0: forward scattering I0 for q = 0
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3.3.1.6. generalized Gaussian coil 2 [39].
The scattering function for the generalized Gaussian coil is according to eq. 3.35b and
differs only by the parametrization for the forward scattering I0 = (bp − V ηs)

2 from the
formula in eq. 3.44

IgGc2(q) = (bp − V ηs)
2 U

1
2ν Γ
(

1
2ν

)
− Γ

(
1
ν

)
− U 1

2ν Γ
(

1
2ν
, U
)

+ Γ
(

1
ν
, U
)

νU1/ν
(3.44)

with the modified variable

U = (2ν + 1) (2ν + 2)
q2R2

G

6
(3.45)

Input Parameters for model generalized Gaussian coil 2:

Rg: radius of gyration Rg

b p: scattering length of polymer bp in [cm]
V: molecular volume of a single polymer molecule V in [cm3]
eta s: scattering length density of solvent ηs in [cm−1]

3.3.1.7. generalized Gaussian coil 3 [39].
The scattering function for the generalized Gaussian coil is according to eq. 3.35b and
differs only by the parametrization for the forward scattering I0 = (bp − Mw

Naρp
ηs)

2 from

the formula in eq. 3.44

IgGc3(q) =

(
bp −

Mw

Naρp
ηs

)2 U
1
2ν Γ
(

1
2ν

)
− Γ

(
1
ν

)
− U 1

2ν Γ
(

1
2ν
, U
)

+ Γ
(

1
ν
, U
)

νU1/ν

(3.46)

with the modified variable

U = (2ν + 1) (2ν + 2)
q2R2

G

6
(3.47)

Input Parameters for model generalized Gaussian coil 3:

Rg: radius of gyration Rg

b p: scattering length of polymer bp in [cm]
M w: molecular weight of polymer Mw in [g/mol]
rho p: mass density of polymer ρp in [g cm−3]
eta s: scattering length density of solvent ηs in [cm−1]
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Figure 3.27. Scattering function of the generalized Gaussian coil plotted
for several excluded volume parameters.
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3.3.2. Star polymer with Gaussian statistic according to Benoit [6].

Figure 3.28. Sketch of a branched or star polymers with f number of arms

Benoit [6] derived an expression for the scattering from branched or star polymers
with a number of arms f , which can be expressed in the following way:

IStar(Q,RG, f) = I0
2

fν2

(
ν −

[
1− e−ν

]
+
f − 1

2

[
1− e−ν

]2)
(3.48)

with u = R2
GQ

2, ν =
uf

3f − 2
and lim

Q=0
IStar(Q,RG, f) = I0. f denotes the number of arms

and RG the Guinier radius of a single arm.

Input Parameters for model Benoit:

RG: radius of gyration of the star polymer Rg

f: number of arms f
I0: forward scattering I0 for q = 0
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Figure 3.29. Scattering function of a star polymer according to Benoit.
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3.3.3. Polydisperse star polymer with Gaussian statistics [14].

Figure 3.30. Polydisperse star polymer with Gaussian statistics

For a SchulzFlory (most probable) distribution (SchulzZimm distribution with z = 1)
for the mass distribution of the arms, Burchard [14] has given the form factor:

IPolydisperseStar(Q) = I0

1 + u2

3f(
1 + u2(f+1)

6f

)2 (3.49)

where f is the number of arms and u2 = 〈R2
g〉z Q2, where 〈R2

g〉z is the z-average radius
of gyration squared of an arm.

Input Parameters for model PolydisperseStar:

R G: radius of gyration RG

f: number of arms f
I0: forward scattering I0
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Figure 3.31. Scattering function of a polydisperse star polymer with
Gaussian statistics.
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3.3.4. Star polymer according to Dozier [26].

3.3.4.1. Dozier.
Branched polymers having all branches emanating from the center of the macromolecule

Figure 3.32. Star polymer according to Dozier

are commonly called star polymers. For a star polymer Dozier [26] has developed a
scattering function which reads:

IDozierStar(Q, I0, RG, α, ν, ξ) = I0 exp

(
−Q

2R2
G

3

)
(3.50)

+
4πα

Qξ
Γ(µ)

sin(µ arctan(Qξ))

(1 +Q2ξ2)µ/2

with µ = 1/ν − 1

RG : radius of gyration

I0 : scale parameter

α : scale parameter for fractal term

ξ : exponential damping length in mass fractal

ν : Flory exponent, 3/5 in good solvent, 1/2 in theta solvent (i.e. µ = 2/3 to 1)

Input Parameters for model Dozier:

R G: radius of gyration RG

I 0: scale parameter I0

alpha: scale parameter for fractal term α
xi: exponential damping length in mass fractal ξ
nu: excluded volume parameter or Flory exponent ν
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Figure 3.33. Scattering function of a star polymer according to Dozier:
I0 = 103, Rg = 60, alpha = 1 ξ = 20, ν = 1/2
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3.3.4.2. Dozier2.
This is a re-parametrization of the Dozier form factor to scale the scattering of the
overall star to the local scattering of the individual arms.

IDozierStar2(Q, I0, RG, Nagg, ν, ξ) =
I0

Nagg

(
(Nagg − 1) exp

(
−Q

2R2
G

3

)
(3.51)

+
Γ(µ)

Qξ

sin(µ arctan(Qξ))

(1 +Q2ξ2)µ/2

)
with µ = 1/ν − 1

RG : radius of gyration of the star

I0 : scale parameter

Nagg : number of arms in the star

ξ : exponential damping length in mass fractal

ν : Flory exponent, 3/5 in good solvent, 1/2 in theta solvent (i.e. µ = 2/3 to 1)

Input Parameters for model Dozier2:

R G: radius of gyration of the star RG

I 0: scale parameter I0

Nagg: number of arms Nagg in the star from which the scale parameter for fractal
term is calculated

xi: exponential damping length in mass fractal ξ
nu: Flory exponent, ν = 3/5 in good solvent, ν = 1/2 in theta solvent (i.e. µ = 2/3

to 1)
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Figure 3.34. Scattering function of a star polymer according to Dozier
but modified to scale the scattering of the overall star to the local scat-
tering of the individual arms by the number of arms
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3.3.5. Flexible Ring Polymer [15].

Figure 3.35. Sketch of a flexible ring polymer.

P1r(q) =

√
2

u2
1r

D

[√
u2

1r

2

]
(3.52)

u2
1r = q2R2

g,1r (3.53)

R2
g,1r =

√
b2N

12
(3.54)

D(X) = exp
(
X2
) X∫

0

exp(t2) dt (3.55)

Input Parameters for model FlexibleRingPolymer:

Rg: radius of gyration RG

I0: forward scattering I0
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Figure 3.36. Scattering intensity of ring polymers of different radius of gyration.
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3.3.6. m-membered twisted ring [15].

Figure 3.37. Sketch of ing polymers which different degree of twisting

Pmr(q) = I0

(
P1r(q)

m
+

2

m2
P 2

1r(q)
m−1∑
j=1

(m− j) exp

(
−
q2R2

g,1r

2
(j − 1)

))
(3.56)

P1r(q) =

√
2

u2
1r

D

[√
u2

1r

2

]
(3.57)

u2
1r = q2R2

g,1r (3.58)

R2
g,1r =

√
b2N

12
(3.59)

D(X) = exp
(
X2
) X∫

0

exp(t2) dt (3.60)

Input Parameters for model mMemberedTwistedRing:

R G,1r: radius of gyration RG,1r of one of m loop
m: number of twists m
I0: forward scattering I0
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Figure 3.38. Scattering intensity of an m-membered twisted ring poly-
mers with different values for m.
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3.3.7. Daisy-like Ring [15].

Figure 3.39. Sketch of a Daisy-like polymer.

Pmr(q) =
I0

m

(
P1r(q) + (m− 1)P 2

1r(q)
)

(3.61)

P1r(q) =

√
2

u2
1r

D

[√
u2

1r

2

]
(3.62)

u2
1r = q2R2

g,1r (3.63)

R2
g,1r =

√
b2N

12
(3.64)

D(X) = exp(X2)

X∫
0

exp(t2) dt (3.65)

Input Parameters for model DaisyLikeRing:

R G,1r: radius of gyration RG,1r of one of m loop
m: number of loops m
I0: forward scattering I0
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Figure 3.40. Scattering intensity of a Daisy-like ring polymers with dif-
ferent number of loops.
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3.3.8. Unified Exponential Power Law according to Beaucage [4, 5].

Figure 3.41. A typical case in which two Rg’s are observed. Particles
composed of sub-particles where a radius of gyration for the entire particle,
Rg, and a radius of gyration for the sub-particles, Rs, are observed. The
surface-fractal cut-off radius of gyration, Rsub, differs from the high-Q
radius of gyration, Rs, in this case. Generally, Rs = Rsub

3.3.8.1. Beaucage.

IBeaucage(Q) ' G exp

(
−
Q2R2

g

3

)

+B exp

(
−Q

2R2
sub

3

)([
erf
(
QkRg/

√
6
)]3

Q

)P

+Gs exp

(
−Q

2R2
s

3

)

+Bs

([
erf
(
QksRs/

√
6
)]3

Q

)Ps

(3.66)

The first term in eq. 3.66 describes the large-scale structure of size Rg composed of
small subunits of size Rs, captured in the third term. The second term describes the
mass-fractal regime with two structural limits. The low-Q limit is at Rg and is described
by the error function. The high-Q limit is at Rsub and is described by the exponential
pre-factor [4] . The final two terms are for the sub-structural mer unit. Using eq. 3.66,
scattering from a system with multiple-size-scale features is parameterized. Generally,
the high-Q cutoff for the intermediate power law, Rsub, is identical to the sub-structural
radius of gyration, Rs. The assumption that Rsub = Rs should always be true for typical
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mass fractals. It should be noted that, although eq. 3.66 appears cumbersome, no new
parameters have been introduced over local fits using exponentials and power laws.

G is the Guinier pre-factor defined above and B is a pre-factor specific to the type
of power-law scattering: B is defined according to the regime in which the exponent
P falls. Generally, for surface fractals 4 > P > 3, for mass fractals P < 3 and for
diffuse interfaces P > 4. For Porod’s law, P = 4 and B = Np2πρ

2
cpSp, where Sp,

is the particulate surface area. For a Gaussian polymer, P = 2, and B is given by
2G/R2

g, through a comparison with the Debye form factor 3.3.1 at the high-Q limit as
discussed below. The constant, k in 3.66, accounts for an approximation involved in the
description of the low-Q power-law limit [4]. This is an empirical constant that has a
value of 1 for steep power-law decays, P > 3. For weak power-law decays, k deviates
slightly from 1. For polymeric mass fractals of fractal dimension df close to 2 (1.5 to
3), k is empirically found to be close to 1.06. Weak deviations are observed between
the scattered intensity as calculated using 3.66 and exact calculations for values of Q
between 2π/Rg and π/Rg in these cases when k = 1. These deviations are reduced to
less than 3% of the calculated intensity using k = 1.06.

Input Parameters for model Beaucage:

G: G is the Guinier pre-factor of the larger structure
B: B is a pre-factor specific to the type of power-law scattering: B is defined

according to the regime in which the exponent P falls.
Gs: Gs is the Guinier pre-factor of the smaller structure
Bs: Bs is a pre-factor specific to the type of power-law scattering: Bs is defined

according to the regime in which the exponent Ps falls.
Rg: large-scale structure
Rsub: surface-fractal cut-off radius of gyration, Rsub defines the high-Q cutoff for

the intermediate power law
Rs: size Rs of small subunits
P: scaling exponent of the power law assigned to the larger structure Rg

Ps: scaling exponent of the power law assigned to the smaller structure Rs
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Figure 3.42.
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3.3.8.2. Beaucage2.

Equation 3.66 can be extended to describe an arbitrary number of interrelated struc-
tural levels under the generally applicable assumption that Rsub = Rs,

IBeaucage(Q) '
n∑
i=1

Gi exp

(
−
Q2R2

g,i

3

)

+Bi exp

(
−
Q2R2

g,i+1

3

)([
erf
(
QkiRg,i/

√
6
)]3

Q

)Pi (3.67)

In 3.67, i = 1 refers to the largest-size structural level. Extensions, such as eq. 3.67, can
only be justified when data extend over many decades in Q. Eq. 3.67 introduces no new
parameters over local Guinier and power-law fits.

Input Parameters for model Beaucage2:

G i: Gi is the Guinier pre-factor
B i: Bi is a pre-factor specific to the type of power-law scattering: Bi is defined

according to the regime in which the exponent Pi falls.
Rg i: large-scale structure Rg,i

Rg i+1: size Rg,i+1 of smaller subunits
k i: This is an empirical constant that has a value of 1 for steep power-law decays,
P > 3. For weak power-law decays, k deviates slightly from 1

k i+1: This is an empirical constant that has a value of 1 for steep power-law
decays, Ps > 3. For weak power-law decays, ks deviates slightly from 1

P i: scaling exponent of the power law assigned to the larger structure Rg,i

P i+1: scaling exponent of the power law assigned to the smaller structure Rg,i+1



3.3. POLYMERS AND MICELLES 93

Figure 3.43.
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3.3.9. WormLikeChainEXV [73].

Figure 3.44. The chain of contour length, L, (the total length) can be
described a chain of some number of locally stiff segments of length lp.
The persistence length,lp, is the length along the cylinder over which the
flexible cylinder can be considered a rigid rod. The Kuhn length (b) used
in the model is also used to describe the stiffness of a chain, and is simply
b = 2lp.

This form factor calculates the form factor for a flexible cylinder with a circular
cross section and a uniform scattering length density. The non-negligible diameter of
the cylinder is included by accounting for excluded volume interactions within the walk of
a single cylinder. Inter-cylinder interactions are NOT included. The function calculated
has been given by Pedersen et al. [73]. The model ”Method 3 With Excluded Volume”
is used, which is a parametrization of simulations of a discrete representation of the
worm-like chain model of Kratky and Porod applied in the pseudo-continuous limit.

Input Parameters for model WormLikeChainEXV:

R: radius R of cylindrical core with uniform scattering length density
l: Kuhn length3 l of semi-flexible worm-like structure
L: contour length L of semi-flexible worm-like structure

3The Kuhn length l is related to the length a of locally stiff segment simply via l = 2a
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Figure 3.45. Comparison of wormlike micelles according to Pedersen
[73] and Kholodenko [54]
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3.3.10. KholodenkoWorm.

Figure 3.46.

Kholodenko [54] presented a new approach using the analogy between Diracs
fermions and semi-flexible polymers. The form factor P0(Q) resulting from Kholodenkos
approach is designed to reproduce correctly the rigid-rod limit and the random-coil limit.
Defining x = 3L/l (L: contour length, l: Kuhn length), it is given by

P0(Q,L, l) =
2

x

[
I(1) −

1

x
I(2)

]
(3.68)

where

I(n)(x) =

x∫
0

f(z) zn−1 dz (3.69)
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together with

f(z)) =


1

E

sinh(Ez)

sinh(z)
for Q ≤ 3

l

1

F

sin(Fz)

sinh(z)
for Q >

3

l

(3.70)

and

E =

√
1−

(
lQ

3

)2

and F =

√(
lQ

3

)2

− 1 (3.71)

For flexible cylinders with a circular cross section and a uniform scattering length
density the cross section form factor is given by

Pcs =

(
2
J1(QR)

QR

)2

(3.72)

so that the overall form factor is given by

P (Q,L, l, R) = P0(Q,L, l)Pcs(Q,R) (3.73)

Input Parameters for model KholodenkoWorm:

R: radius R of cylindrical core with uniform scattering length density
l: Kuhn length4 l of semi-flexible worm-like structure
L: contour length L of semi-flexible worm-like structure

4The Kuhn length l is related to the length a of locally stiff segment simply via l = 2a
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Figure 3.47. Comparison of wormlike micelles according to Pedersen
[73] and Kholodenko [54].
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3.3.11. Diblock copolymer micelles.

(a) spherical micelle (b) ellipsoidal micelle (c) cylindrical micelle

Figure 3.48. Block copolymer forming micelles of different shapes

For block copolymers, which form micelles, several form factor have been imple-
mented [75, 76, 95] for spherical, ellipsoidal, and cylindrical shapes. It has been as-
sumed that one unit is forming the core of the micelles and the other the corona. The
core is assumed to have a homogeneous scattering length density, but may contain some
amount of solvent. For the polymer chains in the corona either a model where Gaussian
chains are attached to the core or a corona model of semi-flexible interacting self-avoiding
chains (only for spherical core) or a continuous model, where a radial profile of the form
Φ(r) ∝ r−α has been assumed. The form factors have been parameterized such, that
the excess scattering of the corona and the core are consistent with the composition and
density of the two separate block units of the copolymer.

3.3.11.1. Micelles with a homogeneous core and Gaussian chains on the surface.

It is assumed that the diblock copolymer consist of a block unit for which the sol-
vent is poor and a block unit with is good. The insoluble blocks form a relatively
compact core whereas the soluble blocks form a diffuse corona surrounding the core.
The form factor of a micelle contains four different terms: the self-correlation term of
the core N2

aggβ
2
core Pcore(q), the self-correlation term of the chains Naggβ

2
brush Pbrush(q), the

cross-term between the core and chains 2N2
aggβcoreβbrush Sbrush-core(q), and the cross term

between different chains Nagg(Nagg − 1)β2
brush Sbrush-brush(q). It can be written (Pedersen

& Gerstenberg, 1996)

Imic = N2
aggβ

2
core Pcore(q) +Naggβ

2
brush Pbrush(q) (3.74)

+ 2N2
aggβcoreβbrush Sbrush-core(q) +Nagg(Nagg − 1)β2

brush Sbrush-brush(q)
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Nagg is the aggregation number of diblock polymers forming the micelle and βbrush =
Vbrush(ηbrush− ηsolv) and βcore = Vcore(ηcore− ηsolv) the excess scattering length of a block
in the corona and in the core, respectively. Vbrush and Vcore are the total volume of a
block in the corona and in the core. ηbrush and ηcore are the corresponding scattering
length densities and ηsolv is the scattering length density of the surrounding solvent.
The functions Pcore(q), Pbrush(q), Sbrush-core(q), and Sbrush-brush(q) are all 1 for q = 0. The
definitions of these four functions depend on the shape of the core and are given below.

3.3.11.2. Spherical core:

Pcore(q, Rcore) = Φ2(qRcore) (3.75)

Φ(qR) = 3
sin(qR)− qR cos(qR)

(qR)3
(3.76)

Pbrush(q, Rg) = 2
exp(−x)− 1 + x

x2
with x = R2

gq
2 (3.77)

Sbrush-core(q, Rcore, Rg, d) = Φ(qRcore)ψ(qRg)
sin(q[Rcore + dRg])

q[Rcore + dRg]
(3.78)

ψ(qRg) =
1− exp(−x)

x
(form factor amplitude of the chain)

Sbrush-brush(q, Rcore, d, Rg) = ψ2(qRg)

[
sin(q[Rcore + dRg])

q[Rcore + dRg]

]2

(3.79)

For micelles with a spherical core a few different parameterizations have been imple-
mented SPHERE+Chains(RW), SPHERE+Chains(RW) Rc and SPHERE+Chains(RW) Nagg.
The parameters they all have in common are:

Vbrush: molecular volume the diblock copolymer part forming the corona
ηcore: scattering length density of the diblock copolymer part forming the core
ηbrush: scattering length density of the diblock copolymer part forming the corona
ηsolv: scattering length density of the solvent
xsolv,core: volume fraction of solvent in the micellar core
Rg: radius of gyration of the block unit in the corona
d: non-penetration of the chains into the core is mimicked by d ∼ 1 for Rcore � Rg

For the model SPHERE+Chains(RW) the other parameters are

Rcore: radius of the micellar core
nagg: grafting density (number of copolymer molecules Nagg per surface are S,
nagg = Nagg/S)

In contrast to the form factor SPHERE+Chains(RW) Rc and SPHERE+Chains(RW) Nagg

this one does not necessary consist of copolymers. The excess scattering lengths and
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aggregation number needed in eq. 3.74 are than given by

Nagg = naggS (3.80)

where the surface of the core is given by S = 4πR2
core. Together with the core volume

V = 4
3
πR3

core one gets for the excess scattering lengths

βcore =
V (1− xsolv,core)

Nagg

(ηcore − ηsolv) (3.81)

βbrush = Vbrush(ηbrush − ηsolv) (3.82)

Input Parameters for model SPHERE+Chains(RW):

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

For the model SPHERE+Chains(RW) Rc the other parameters are

Rcore: core radius
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and aggregation number in eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.83)

βbrush = Vbrush(ηbrush − ηsolv) (3.84)

Nagg = (1− xsolv,core)
4

3
πR3

core/Vcore (3.85)

Input Parameters for model SPHERE+Chains(RW) Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
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d: This value should be around 1. Non-penetration of the chains into the core is
mimicked by d ∼ 1 for Rcore � Rg

For the model SPHERE+Chains(RW) Nagg the other parameters are

Nagg: aggregation number
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and the core radius Rcore needed in eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.86)

βbrush = Vbrush(ηbrush − ηsolv) (3.87)

Rcore =

(
NaggVcore

1− xsolv,core

3

4π

)1/3

(3.88)

Input Parameters for model SPHERE+Chains(RW) Nagg:

N agg: aggregation number
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg
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3.3.11.3. ellipsoidal core with semi-axis (R,R, εR):

Pcore(q, Rcore, ε) =

π/2∫
0

Φ2[qr(Rcore, ε, α)] sinα dα (3.89)

with r(Rcore, ε, α) = Rcore

√
sin2 α + ε2 cos2 α

Pbrush(q, Rg) = 2
exp(−x)− 1 + x

x2
with x = R2

gq
2 (3.90)

Sbrush-core(q, Rcore, ε, Rg, d) = ψ(qRg)

π/2∫
0

Φ(qr(. . . ))
sin(q[r(. . . ) + dRg])

q[r(. . . ) + dRg]
sinα dα

(3.91)

Sbrush-brush(q, Rcore, d, Rg) = ψ2(qRg)

π/2∫
0

[
sin(q[r(. . . ) + dRg])

q[r(. . . ) + dRg]

]2

sinα dα (3.92)

As for micelles with spherical core also for those with an ellipsoidal core several
parameterizations have been implemented ELL+Chains(RW), ELL+Chains(RW) Rc and
ELL+Chains(RW) Nagg. The parameters they all have in common are:

Vbrush: molecular volume the diblock copolymer part forming the corona
ηcore: scattering length density of the diblock copolymer part forming the core
ηbrush: scattering length density of the diblock copolymer part forming the corona
ηsolv: scattering length density of the solvent
xsolv,core: volume fraction of solvent in the micellar core
Rg: radius of gyration of the block unit in the corona
d: non-penetration of the chains into the core is mimicked by d ∼ 1 for Rcore � Rg

ε: eccentricity of the ellipsoidal micelle (Rcore, Rcore, εRcore)

For the model ELL+Chains(RW) the other parameters are

Rcore: radius of the micellar core (Rcore, Rcore, εRcore)
nagg: grafting density (number of copolymer molecules Nagg per surface are S,
nagg = Nagg/S)

In contrast to the form factor ELL+Chains(RW) Rc and ELL+Chains(RW) Nagg this one
does not necessary consist of copolymers. The excess scattering lengths and aggregation
number needed in eq. 3.74 are given by

Nagg = naggS (3.93)
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where the surface of the core is given by

S =

2πR2
core

(
1 + arctanh(sin(æ))

sin(æ)

)
for ε < 1

2πR2
core

(
1 + æ

tan(æ)

)
for ε ≥ 1

(3.94)

æ =

{
arccos(ε) for ε < 1

arccos(1/ε) for ε ≥ 1

Together with the core volume V = 4
3
πεR3

core one gets for the excess scattering lengths

βcore =
V (1− xsolv,core)

Nagg

(ηcore − ηsolv) (3.95)

βbrush = Vbrush(ηbrush − ηsolv) (3.96)

Input Parameters for model ELL+Chains(RW):

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

epsilon: eccentricity of the ellipsoidal micelle (Rcore, Rcore, εRcore)

For the model ELL+Chains(RW) Rc the other parameters are

Rcore: core radius
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and aggregation number in eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.97)

βbrush = Vbrush(ηbrush − ηsolv) (3.98)

Nagg = (1− xsolv,core)
4

3
πεR3

core/Vcore (3.99)

Input Parameters for model ELL+Chains(RW) Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
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eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

epsilon: eccentricity of the ellipsoidal micelle (Rcore, Rcore, εRcore)

For the model ELL+Chains(RW) Nagg the other parameters are

Nagg: aggregation number
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and the core radius Rcore needed in eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.100)

βbrush = Vbrush(ηbrush − ηsolv) (3.101)

Rcore =

(
NaggVcore

1− xsolv,core

3

4πε

)1/3

(3.102)

Input Parameters for model ELL+Chains(RW) Nagg:

N agg: aggregation number
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

epsilon: eccentricity of the ellipsoidal micelle (Rcore, Rcore, εRcore)
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3.3.11.4. cylindrical core with radius Rcore and height H:

Pcore(q, Rcore, H) =

π/2∫
0

Ψ2(q, Rcore, H, α) sinα dα (3.103)

with Ψ(q, Rcore, H, α) =
2J1(qRcore sinα)

qRcore sinα

sin(qH/2 cosα)

qH/2 cosα
(3.104)

and J1(x) is the first order Bessel function of the first kind.

Pbrush(q, Rg) = 2
exp(−x)− 1 + x

x2
with x = R2

gq
2 (3.105)

Sbrush-core(q,Rcore, H,Rg, d) = ψ(qRg) × (3.106)

π/2∫
0

Ψ(q, Rcore, H, α)Ξ(q, R + dRg, H + 2dRg, α) sinα dα

where Ξ(q, Rcore, H, α) is the form factor amplitude of the shell:

Ξ(q, RcoreH,α) =

[
R

Rcore +H

2J1(qRcore sinα)

qRcore sinα
cos(qH/2 cosα) (3.107)

+
H

Rcore +H
J0(qRcore sinα)

sin(qH/2 cosα)

qH/2 cosα

]
where J0(x) is the zeroth order Bessel function of the first kind.

Sbrush-brush(q,Rcore, H, d, Rg) = ψ2(qRg) × (3.108)

π/2∫
0

Ξ2(q, Rcore + dRg, H + 2dRg, α) sinα dα

As for micelles with spherical core also for those with a cylindrical core several
parameterizations have been implemented CYL+Chains(RW), CYL+Chains(RW) Rc and
CYL+Chains(RW) Nagg. The parameters they all have in common are:

Vbrush: molecular volume the diblock copolymer part forming the corona
ηcore: scattering length density of the diblock copolymer part forming the core
ηbrush: scattering length density of the diblock copolymer part forming the corona
ηsolv: scattering length density of the solvent
xsolv,core: volume fraction of solvent in the micellar core
Rg: radius of gyration of the block unit in the corona
d: non-penetration of the chains into the core is mimicked by d ∼ 1 for Rcore � Rg

H: height of the cylindrical core of the micelle

For the model CYL+Chains(RW) the other parameters are

Rcore: radius of the micellar core (Rcore, Rcore, εRcore)
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nagg: grafting density (number of copolymer molecules Nagg per surface are S,
nagg = Nagg/S)

In contrast to the form factor CYL+Chains(RW) Rc and CYL+Chains(RW) Nagg this one
does not necessary consist of copolymers. The excess scattering lengths and aggregation
number needed in eq. 3.74 are than given by

Nagg = naggS (3.109)

where the surface of the core is given by

S = 2πRcoreH (3.110)

Together with the core volume V = πR2
coreH one can calculate the excess scattering

lengths by

βcore =
V (1− xsolv,core)

Nagg

(ηcore − ηsolv) (3.111)

βbrush = Vbrush(ηbrush − ηsolv) (3.112)

Input Parameters for model CYL+Chains(RW):

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

H: height of the cylindrical core of the micelle

For the model CYL+Chains(RW) Rc the other parameters are

Rcore: core radius
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and aggregation number in eq. 3.74 are than given by

βcore = Vcore(ηcore − ηsolv) (3.113)

βbrush = Vbrush(ηbrush − ηsolv) (3.114)

Nagg = (1− xsolv,core)πR
2
coreH/Vcore (3.115)

Input Parameters for model CYL+Chains(RW) Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
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eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

H: height of the cylindrical core of the micelle

For the model CYL+Chains(RW) Nagg the other parameters are

Nagg: aggregation number
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and the core radius Rcore are given by

βcore = Vcore(ηcore − ηsolv) (3.116)

βbrush = Vbrush(ηbrush − ηsolv) (3.117)

Rcore =

√
NaggVcore

1− xsolv,core

1

πH
(3.118)

Input Parameters for model CYL+Chains(RW) Nagg:

N agg: aggregation number
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

H: height of the cylindrical core of the micelle
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3.3.11.5. wormlike micelles with cylindrical cross-section with radius Rcore,
Kuhn-length l and contour length L:
The form factors for a worm-like micelles are approximated by the form factor of the
Kholodenko-worm according to section 3.3.10 where the scattering length density profile
across the worm segments are described by those of a rod-like micelle 3.3.11.6. The
corresponding function in eq. 3.74 are given by

Pcore(q, Rcore, l, L) = Pworm(q, l, L)Pcs(q, Rcore, d, Rg) (3.119)

the contributiion of the worm-like conformation of the micelle Pworm(q, l, L) is described
by the formula of Kholodenko for worm-like structures given in eq. 3.68. The contribu-
tion of the cross-section Pcs is the same as for rod-like micelles and given by

Pcs(q, Rcore, d, Rg) =

[
2J1(qRcore)

qRcore

]2

(3.120)

Si(x) =

x∫
0

t−1 sin t dt (3.121)

Pbrush(q, Rg) = 2
exp(−x)− 1 + x

x2
with x = R2

gq
2 (3.122)

Sbrush-core(q,Rcore, l, L,Rg, d) = ψ(qRg) × (3.123)

2J1(qRcore)

qRcore

J0[q(rcore + dRg)]Pworm(q, l, L)

Sbrush-brush(q, Rcore, l, L, d, Rg) = ψ2(qRg)J
2
0 [q(rcore + dRg)]Pworm(q, l, L) (3.124)

As for micelles with spherical core also for those worm-like micelles several pa-
rameterizations have been implemented WORM+Chains(RW), WORM+Chains(RW) Rc and
WORM+Chains(RW) nagg. The parameters they all have in common are:

Vbrush: molecular volume the diblock copolymer part forming the corona
ηcore: scattering length density of the diblock copolymer part forming the core
ηbrush: scattering length density of the diblock copolymer part forming the corona
ηsolv: scattering length density of the solvent
xsolv,core: volume fraction of solvent in the micellar core
Rg: radius of gyration of the block unit in the corona
l: contour length of the worm-like of the micelle
L: contour length of the worm-like of the micelle

For the model WORM+Chains(RW) the other parameters are

Rcore: radius of the micellar core
nagg: grafting density (number of copolymer molecules Nagg per surface are S,
nagg = Nagg/S)
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In contrast to the form factor WORM+Chains(RW) Rc and WORM+Chains(RW) nagg this one
does not necessary consist of copolymers. The excess scattering lengths and aggregation
number needed in eq. 3.74 are than given by

Nagg = naggS (3.125)

where the surface of the core is given by

S = 2πRcoreL (3.126)

Together with the core volume V = πR2
coreL one can calculate the excess scattering

lengths by

βcore =
V (1− xsolv,core)

Nagg

(ηcore − ηsolv) (3.127)

βbrush = Vbrush(ηbrush − ηsolv) (3.128)

Input Parameters for model WORM+Chains(RW):

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
l: contour length of the worm-like of the micelle
L: contour length of the worm-like of the micelle

For the model WORM+Chains(RW) Rc the other parameters are

Rcore: core radius
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and aggregation number in eq. 3.74 are than given by

βcore = Vcore(ηcore − ηsolv) (3.129)

βbrush = Vbrush(ηbrush − ηsolv) (3.130)

Nagg = (1− xsolv,core)πR
2
coreL/Vcore (3.131)

Input Parameters for model CYL+Chains(RW) Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core



3.3. POLYMERS AND MICELLES 111

Rg: gyration radius of polymer chains in the corona
l: contour length of the worm-like of the micelle
L: contour length of the worm-like of the micelle

For the model WORM+Chains(RW) Nagg the other parameters are

Nagg: aggregation number
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and the core radius Rcore are given by

βcore = Vcore(ηcore − ηsolv) (3.132)

βbrush = Vbrush(ηbrush − ηsolv) (3.133)

Rcore =

√
NaggVcore

1− xsolv,core

1

πL
(3.134)

Input Parameters for model CYL+Chains(RW) Nagg:

N agg: aggregation number
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
l: contour length of the worm-like of the micelle
L: contour length of the worm-like of the micelle



112 3. FORM FACTORS

3.3.11.6. micelles with rod-like core:
The form factors for micelles with a rod-like core are an approximations of the form
factors of micelles with a cylindrical core where H � Rcore + dRg. The corresponding
function in eq. 3.74 are given by

Pcore(q, Rcore, H) = PH(q,H)Pcs(q, Rcore, d, Rg) (3.135)

with

PH(q,H) = 2Si(qH)/(qH)− 4 sin2(qH/2)/(q2H2) (3.136)

Pcs(q, Rcore, d, Rg) =

[
2J1(qRcore)

qRcore

]2

(3.137)

Si(x) =

x∫
0

t−1 sin t dt (3.138)

Pbrush(q, Rg) = 2
exp(−x)− 1 + x

x2
with x = R2

gq
2 (3.139)

Sbrush-core(q,Rcore, H,Rg, d) = ψ(qRg) × (3.140)

2J1(qRcore)

qRcore

J0[q(rcore + dRg)]PH(q,H)

Sbrush-brush(q, Rcore, H, d, Rg) = ψ2(qRg)J
2
0 [q(rcore + dRg)]PH(q,H) (3.141)

As otherwise the definitions of the geometry for rod-like micelles are mainly the same
than for cylindrical micelles only the list of input parameters are given here. There
is only one difference in the model ROD+Chains(RW) Nagg compared to the model
CYL+Chains(RW) Nagg and that is that for rod-like structures always the grafting den-
sity of polymer chains on the surface of the core is used, i.e. nagg = Nagg/S instead of
Nagg. For the model ROD+Chains(RW) nagg this means that the core radius has to be
calculated by Rcore = 2naggVcore/(1− xsolv,core)

Input Parameters for model ROD+Chains(RW):

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

H: height of the rod-like core of the micelle
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Input Parameters for model ROD+Chains(RW) Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

H: height of the rod-like core of the micelle

Input Parameters for model ROD+Chains(RW) nagg:

n agg: specific aggregation number (number of chains per surface area)
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in core
Rg: gyration radius of polymer chains in the corona
d: This value should be around 1. Non-penetration of the chains into the core is

mimicked by d ∼ 1 for Rcore � Rg

H: height of the rod-like core of the micelle
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3.3.11.7. Micelles with a homogeneous core and a corona with decaying density
profile . of the form ϕ(r) ∝ r−α.

Figure 3.49. radial profile.

The structure of block copolymer micelles may be described in terms of the model
of starlike polymer as proposed by Daoud and Cotton [19]. Starlike polymers consist of
a homogeneous, dense polymer core surrounded by a polymer layer. As a consequence
of the spherical or cylindrical geometry, the density profile φ(r) in the polymer layer
decreases according to Wijmans & Zhulina [103] as

φ(r)


φcore for r < Rcore

φbrush

(
r

Rcore

)−α
for Rcore ≤ r ≤ Rcore + t

0 for r > Rcore + t

(3.142)

with α = (D − 1)(3ν − 1)/(2ν). D is determined by the dimension of the curvature
of the grafted surface (spherical D = 3, cylindrical D = 2, planar D = 1). ν is the
Flory exponent, which has characteristic values as given in Table 1. The corresponding
density profile is schematically shown in Figure 3.49. Micelles consist of a well-defined
micellar core with a radius Rcore and a micellar shell or corona extending to the outer
micellar radius Rm = Rcore + t, where t is the thickness of the corona.

Table 1. Flory exponent ν and exponent α of the radial density profile
for different thermodynamic states of the polymer chains

ν αsphere αcylinder αplanar remarks
D = 3 D = 2 D = 1

1/3 0 0 0 collapsed polymer
1/2 1 1/2 0 polymer in Θ-solvent, semi-dilute solution
3/5 4/3 2/3 0 polymer in good solvent
1 2 1 0 polymer in stretched conformation, e.g. polyelectrolyte
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For a given radial profile according to eq. 3.142 the form factor of spherical micelle
can be calculated by

FSPHERE =

∞∫
0

2πr2φ(r)
sin(qr)

qr
dr (3.143)

In case of a rod-like micelle the form factor can be separated in two terms I(q) =
PH(q)Pcs(q) as already in shown in eq. 3.135. The cross-term contribution to the scat-
tering intensity is given by

Pcs(q) = F 2
cs(q)

Fcs(q) =

∞∫
0

2πrφ(r)J0(q) dr
(3.144)

However, as it is more convenient here to formulate the scattering intensity in terms of
excess scattering length of the block units in the core βcore and the corona βbrush like in
eq. 3.74 the form factor is split into two parts, the form factor of the homogeneous core
Fcore(q) and the form factor of the corona Fbrush(q). The overall scattering intensity I(q)
is than given by

I(q) = N2
aggβ

2
coreF

2
core(q) + 2N2

aggβcoreβcoronaFcore(q)Fcorona(q)

+Nagg(Nagg − 1)β2
coronaF

2
corona(q) +NaggPbrush(q)

(3.145)

The excess scattering length of a block in the corona and in the core, respectively,
βbrush = Vbrush(ηbrush − ηsolv) and βcore = Vcore(ηcore − ηsolv) are defined in the same way
than in eq. 3.74. Vbrush and Vcore are the total volume of a block in the corona and in
the core. ηbrush and ηcore are the corresponding scattering length densities and ηsolv is
the scattering length density of the surrounding solvent. Fcore(q) is the form factor of
the core and normalized to 1 for q = 0. Also the form factor of the corona Fcorona(q) and
the form factor of the local fluctuations in the corona originating from the individual
chains Pbrush(q) are normalized to 1 for q = 0. Similar to section 3.3.11.1 models for
spherical and rod-like shapes have been implemented which are described in the following
paragraphs.

3.3.11.8. spherical core:

Fcore(q, R) = 3
sin(qR)− qR cos(qR)

(qR)3
(3.146)

Fbrush(q, R, t) =
1

Cnorm

Rcore+t∫
Rcore

2πr2r−α
sin(qr)

qr
dr (3.147)
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with

Cnorm =

{
4

3−απ
(
(Rcore + t)3−α −R3−α

core

)
for α 6= 2

4π ln
(
Rcore+t
Rcore

)
for α = 2

For the scattering contribution of the individual chains in the corona Pbrush the scattering
function for worm-like chains with excluded volume and negligible cross-section, contour
length L and Kuhn-length b according to section 3.3.9 has been implemented.

For micelles with a spherical core a few different parameterizations have been imple-
mented SPHERE+Rˆ-a, SPHERE+Rˆ-a Rc and SPHERE+Rˆ-a Nagg.

The parameters they all have in common are:

Vbrush: molecular volume the diblock copolymer part forming the corona
ηcore: scattering length density of the diblock copolymer part forming the core
ηbrush: scattering length density of the diblock copolymer part forming the corona
ηsolv: scattering length density of the solvent
α: exponent of the radial scattering length density profile (r−α)
t: corona thickness
L: contour length of the chain in the corona
b: Kuhn-length of the chain in the corona

For the model SPHERE+Rˆ-a the other parameters are

Rcore: radius of the micellar core
nagg: grafting density (number of copolymer molecules Nagg per surface are S,
nagg = Nagg/S)

In contrast to the form factor SPHERE+Rˆ-a Rc and SPHERE+Rˆ-a Nagg this one does not
necessary consist of copolymers. The excess scattering lengths and aggregation number
are given by

Nagg = naggS (3.148)

where the surface of the core is given by S = 4πR2
core. Together with the core volume

V = 4
3
πR3

core one gets for the excess scattering lengths

βcore =
V (1− xsolv,core)

Nagg

(ηcore − ηsolv) (3.149)

βbrush = Vbrush(ηbrush − ηsolv) (3.150)

Input Parameters for model SPHERE+Rˆ-a:

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
alpha: exponent of the radial scattering length density profile (r−α)
t: corona thickness
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L: contour length of the chain in the corona
b: Kuhn-length of the chain in the corona



118 3. FORM FACTORS

For the model SPHERE+Rˆ-a Rc the other parameters are

Rcore: core radius
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and aggregation number for eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.151)

βbrush = Vbrush(ηbrush − ηsolv) (3.152)

Nagg = (1− xsolv,core)
4

3
πR3

core/Vcore (3.153)

Input Parameters for model SPHERE+Rˆ-a Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
alpha: exponent of the radial scattering length density profile (r−α)
t: corona thickness
L: contour length of the chain in the corona
b: Kuhn-length of the chain in the corona

For the model SPHERE+Rˆ-a Nagg the other parameters are

Nagg: aggregation number
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and the core radius Rcore needed for eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.154)

βbrush = Vbrush(ηbrush − ηsolv) (3.155)

Rcore =

(
NaggVcore

1− xsolv,core

3

4π

)1/3

(3.156)

Input Parameters for model SPHERE+Rˆ-a Nagg:

N agg: aggregation number
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
alpha: exponent of the radial scattering length density profile (r−α)
t: corona thickness
L: contour length of the chain in the corona
b: Kuhn-length of the chain in the corona
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3.3.11.9. rodlike core:
In case of a rod-like micelle the form factor can be separated in two terms I(q) =
PH(q)Pcs(q) as already in shown in eq. 3.135. The cross-term contribution to the
scattering intensity is given by

Pcs(q) = F 2
cs(q)

Fcs(q) =

∞∫
0

2πrφ(r)J0(qr) dr = Fcs,core(q) + Fcs,brush(q)
(3.157)

The contribution of the homogeneous core is given by

Fcs,core(q) =
2J1(qRc)

qRc

(3.158)

and for the corona by

Fcs,brush(q) =
1

cα

Rc+t∫
Rc

2πr r−αJ0(qr) dr (3.159)

cα =

Rc+t∫
Rc

2πr r−α dr

=

{
2π ln

(
Rc+t
Rc

)
for α = 2

2
2−απ ((Rc + t)2−α −R2−α

c ) for α 6= 2
(3.160)

For the scattering contribution of the individual chains in the corona Plocal normally
can be neglected for rod-like micelles in contrast to spherical structures as for struc-
tures with a lower dimension than spheres, this contribution becomes more and more
negligible. To account for the scattering of the individual chains at least in first approx-
imation and without introducing new parameters a form factor similar to the one of star
polymers has been implemented.

Plocal(q) =
Γ(µ)

qt

sin (µ arctan(qt))

(1 + q2t2)µ/2
(3.161)

µ =
1

ν
− 1, α =

3ν − 1

2ν
⇔ µ = 2(1− α)

The form factor to describe the scattering of the individual chains is identical to the blob
scattering contribution in star-like polymers according to Dozier (3.3.4). The exponential
damping length ξ in the definition of the star polymer has been set to the shell thickness
t. In the original paper of Pedersen the Plocal was described by the scattering of a semi-
flexible chain with excluded volume according to section 3.3.9, which however would
require to define two more parameters.

For micelles with a rod-like core a few different parameterizations have been imple-
mented ROD+Rˆ-a, ROD+Rˆ-a Rc and ROD+Rˆ-a Nagg.

The parameters they all have in common are:
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Vbrush: molecular volume the diblock copolymer part forming the corona
ηcore: scattering length density of the diblock copolymer part forming the core
ηbrush: scattering length density of the diblock copolymer part forming the corona
ηsolv: scattering length density of the solvent
xsolv,core: amount of solvent in the core
α: exponent of the radial scattering length density profile (r−α)
t: corona thickness
H: height of the cylinder

For the model ROD+Rˆ-a the other parameters are

Rcore: radius of the micellar core
nagg: grafting density (number of copolymer molecules Nagg per surface are S,
nagg = Nagg/S)

In contrast to the form factor ROD+Rˆ-a Rc and ROD+Rˆ-a Nagg this one does not nec-
essary consist of copolymers. The excess scattering lengths and aggregation number are
given by

Nagg = naggS (3.162)

where the surface of the core is given by S = 2πRcoreH. Together with the core volume
V = πR2

coreH one gets for the excess scattering lengths

βcore =
Vcore(1− xsolv,core)

Nagg

(ηcore − ηsolv) (3.163)

βbrush = Vbrush(ηbrush − ηsolv) (3.164)

Input Parameters for model ROD+Rˆ-a:

R core: core radius
n agg: specific aggregation number (number of chains per surface area)
V brush: molecular volume of a block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in the core
alpha: exponent of the radial scattering length density profile (r−α)
t: corona thickness
H: rod height

For the model ROD+Rˆ-a Rc the other parameters are

Rcore: core radius
Vcore: molecular volume of single block unit in the micellar core
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The excess scattering lengths and aggregation number for eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.165)

βbrush = Vbrush(ηbrush − ηsolv) (3.166)

Nagg = 2πR2
coreH

1− xsolv,core

Vcore

(3.167)

Input Parameters for model ROD+Rˆ-a Rc:

R core: core radius
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in the core
alpha: exponent of the radial scattering length density profile (r−α)
t: corona thickness
H: rod height

For the model ROD+Rˆ-a Nagg the other parameters are

nagg: specific aggregation number, aggregation number per surface area
Vcore: molecular volume of single block unit in the micellar core

The excess scattering lengths and the core radius Rcore needed for eq. 3.74 are given by

βcore = Vcore(ηcore − ηsolv) (3.168)

βbrush = Vbrush(ηbrush − ηsolv) (3.169)

Rcore =
2nagg Vcore

1− xsolv,core

(3.170)

Input Parameters for model ROD+Rˆ-a nagg:

n agg: specific aggregation number (number of chains per surface area)
V core: molecular volume of single block unit in the micellar core
V brush: molecular volume of single block unit in the micellar corona
eta core: scattering length density of spherical core
eta brush: scattering length density of the block unit in the corona
eta solv: scattering length density of solvent
xsolv core: amount of solvent in the core
alpha: exponent of the radial scattering length density profile (r−α)
t: corona thickness
H: rod height

REFERENCES:
[19, 28, 67, 103]
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3.3.11.10. spherical Micelles with a homogeneous core and a corona of semi-flexible
interacting self-avoiding chains.

3.3.12. Sphere with Gaussian chains attached.

Figure 3.50. Block copolymer micelles.

The expressions have been derived by Pedersen and Gerstenberg [75, 76]. For a
sphere with radius R and total excess scattering length ρs with Nagg attached chains

Pmic(Q) = N2
aggρ

2
sPs(Q,R) +Naggρ

2
cPc(Q,Rg) (3.171)

+Nagg(Nagg − 1)ρ2
cScc(Q) + 2N2

aggρsρcSsc(Q)
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with:

Ps = Φ2(Q,R) (3.172)

Φ(Q,R) = 3
sin(QR)−QR cos(QR)

(QR)3
(3.173)

Pc(Q,Rg) = 2
exp(−x)− 1 + x

x2
(3.174)

x = R2
gQ

2 (3.175)

Ψ(Q,Rg) =
1− exp(−x)

x
(3.176)

Scc(Q) = Ψ2(Q,Rg)

(
sin(Q(R + d Rg))

Q(R + dRg)

)2

(3.177)

Ssc(Q) = Ψ(Q,Rg)Φ(QRg)
sin(Q(R + dRg))

Q(R + dRg)
(3.178)

where Rg is the root-mean-square radius of gyration of a chain. ρc is the total excess
scattering length of a single chain. Non-penetrating of the chains into the core region is
mimicked by d ≈ 1 for R� Rg.

Input Parameters for model SphereWithGaussChains:

R: radius of core R
Rg: gyration radius of chain Rg

d: for non-penetration of the chains into the core region d ≈ 1.
Nagg: aggregation number Nagg

rc: excess scattering length of a block in the chains ρc
rs: excess scattering length of a block in the core ρs
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3.3.13. Sphere with Gaussian chains attached (block copolymer micelle).

This form factor is the same than for SphereWithGaussChains. It has only been
slightly re-parametrised. Instead of the core radius R and excess scattering lengths ρs
and ρc the volumes Vpolym,c and Vpolym,sh of the block units building the core and the shell
are required together with the corresponding scattering length densities ηpoly,c, ηpoly,sh

and that one of the solvent ηsolv. Furthermore xsolv,c is the amount of solvent in the core
which takes account for a possible swelling of the core. These parameters allow one to
calculate the core radius and excess scattering lengths by

R =

(∣∣∣∣NaggVpolym,c

1− xsolv,c

∣∣∣∣ 3

4π

)1/3

(3.179)

ρs = Vpolym,c (ηpoly,c − ηsolv) (3.180)

ρc = Vpolym,sh (ηpoly,sh − ηsolv) (3.181)

The volumes Vpolym,c and Vpolym,sh can be calculated by knowing the molecular
weights5 of the block units of the polymer in the core Mpolym,c and in the shell Mpolym,sh

together with their bulk mass densities ρpolym,c and ρpolym,sh. The volumes are then given
by

Vpolym,c =
Mpolym,c

Na ρpolym,c

and Vpolym,sh =
Mpolym,sh

Na ρpolym,sh

(3.182)

whereby Na is Avogadro’s constant6. The units of the block units has to be supplied in
units corresponding to the scattering vector Q, i.e. in nm3 in case Q is given in nm−1

or in Å3 in case Q is given in Å−1.

Input Parameters for model BlockCopolymerMicelle:

Vpolym c: volume of a single block unit of the chains in the core Vpolym,c, it should
be given in units of nm3 in case Q is given in nm−1 and in units of Å3 in case
Q is given in Å−1.

xsolv c: amount of solvent in the core (xsolv,c 6= 1)
Vpolym sh: volume of a single block unit of the chains in the shell Vpolym,sh, it

should be given in units of nm3 in case Q is given in nm−1 and in units of Å3

in case Q is given in Å−1.
eta poly c: scattering length density of the block units in the core ηc

eta poly sh: scattering length density of the block units in the chains ηsh

eta solv: scattering length density of the solvent ηsolv

Nagg: aggregation number Nagg

Rg: gyration radius of chain Rg

d: for non-penetration of the chains into the core region d ≈ 1.

5u = 1.66053886× 10−27 kg
6Na = 6.0221415× 1023mol−1
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3.4. Bi-continuous and non-particular structures

3.4.1. TeubnerStrey.

The Teubner and Strey [96, 87] phenomenological model often accurately describes
scattering from bi-continuous micro-emulsions. The scattered intensity for this model is

I(q) =
8π〈η2〉/ξ

a2 − 2bq2 + q4
(3.183)

where a2 = (k2 + 1/ξ2)2 is a positive quantity, and b = k2 − 1/ξ2 can be a positive or
negative depending on the relative magnitude of d = 2π/k and ξ. A positive b, i.e. ξ >

d/2π, leads to a peak at qmax =
√
b whereby for ξ < d/2π, hence negative b, no distinct

peak appears. The length scale d represents a quasi-periodic repeat distance between
water and oil regions within the solution, while the correlation length, ξ , corresponds to
a characteristic length for positional correlation. k is defined as 2π/d. The corresponding
isotropic real space correlation function, γ(r), that incorporates alternating regions of
the two phases in the bi-continuous system (e.g. water and oil), is given by

γ(r) =
sin(kr)

kr
exp

(
−r
ξ

)
(3.184)

Input Parameters for model TeubnerStrey:

xi: correlation length ξ
d: characteristic domain size d
eta2: squared scattering length density contrast η2

Note:

• None
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Figure 3.51.
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3.4.2. Debye Anderson Brumberger(DAB).

This form factor calculates the scattering from a randomly distributed (i.e. non-
particulate), two-phase system based on the Debye-Anderson-Brumberger (DAB) [24,
25] model for such systems. The two-phase system is characterized by a single length
scale, the correlation length ξ, which is a measure of the average spacing between regions
of phase 1 and phase 2. The model also assumes smooth interfaces between the phases
and hence exhibits Porod behavior (I ∝ q−4) at large q (qξ � 1). The pair correlation
function is give by [25]

γ(r) = exp(−r/ξ) (3.185)

The macroscopic scattering cross-section in the DBA model is given by

I(q) = I0
1

[1 + (qξ)2]2
(3.186)

Input Parameters for model DAB:

xi: correlation length ξ
I0: forward scattering I0

Note:

• None

Figure 3.52.



128 3. FORM FACTORS

3.4.3. Spinodal.

Figure 3.53. Schematic representation of a phase separation scheme re-
sulting in a connected globule structure.

Spinodal decomposing systems show a characteristic small angle scattering signal
with a correlation peak at some scattering value qmax. The scattering curve I(q) can be
approximated by

I(q) = Imax
(1 + γ/2)x2

γ/2 + x2+γ
(3.187)

according to Furukawa [32], where x = q/qmax. The position of the correlation peak at
qmax contain information about the size of the structures, which scatter. The exponent
γ is equal to γ = D + 1 for off-critical mixtures and γ = 2D for critical concentration
mixtures, whereby D is the dimensionality of the system.

Input Parameters for model Spinodal:

Qmax: peak maximum qmax

gamma: exponent γ
Imax: scattering intensity at peak position Imax

Note:

• None
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Figure 3.54.
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3.4.4. OrnsteinZernike.
The low-angle scattering of thermal composition fluctuations can be described according
to the Ornstein-Zernike formulation by a Lorentzian profile

I(q) =
I0

1 + q2ξ2
(3.188)

characterizing the exponential decay of the composition fluctuations correlation function,
with correlation length ξ. The Fourier transform of a Lorentzian function corresponds to
correlations dying out as γ(r) ' 1

r
exp(−r/ξ). Note that the low-Q limit of this empirical

form reproduces the Guinier law.

Input Parameters for model OrnsteinZernike:

I0: forward scattering I0 at q = 0.
xi: correlation length ξ

Figure 3.55. Ornstein-Zernike Scattering intensity I(q) for different cor-
relation lengths ξ
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3.4.5. BroadPeak.
Many SANS spectra are characterized by a broad peak even though they are from amor-
phous soft materials. The d-spacing corresponding to the broad peak is a characteristic
distance between the scattering inhomogeneities (such as in lamellar, cylindrical, or
spherical morphologies or for bicontinuous structures). The following simple functional
form reproduces the broad peak feature:

I(q) =
I0

1 + (|q − q0|ξ)m
(3.189)

Here the peak position is related to the d-spacing as q0 = 2π/d. Soft systems that
show a SANS peak include copolymers, polyelectrolytes, multiphase systems, layered
structures, etc.
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3.4.6. Generalized Guinier approximation [30, 47, 45, 46].

Figure 3.56. generalized Guinier approximation

Quantitative analysis of particle size and shape starts with the Guinier approxi-
mations. For three-dimensional objects the Guinier approximation is given by I(q) =
exp(−Rg2q2/3) This approximation can be extended also to rod-like and plane objects
by

I(q) =

{
1 for α = 0
απq−α for α = 1, 2

}
A exp

(
−R

2
αq

2

3− α

)
(3.190)

α = 0: spheroid
α = 1: rod-like
α = 2: plane

The apparent particle shape (also called the dimensionality) is represented in eq. 3.190
by α, which has integer values of 0, 1, and 2 for a point, a line, and a plane, respectively.
Equation 3.190 states that there are q ranges, corresponding to length scales as q−1,
from which the particle dimension or shape, α, the radius of gyration, Rα, and the pre-
factor, A, characteristic of α can be inferred. α has a value of 0 for a q range such that
qRg < 1 − 1.3 (the larger applies when the particle is known to be a spheroid), where
Rg is the particle radius of gyration (computed about the particle centroid). In this
case, the pre-factor A describes the excess differential cross-section per unit mass (cm2

g−1) of a particle. If the particle has one dimension of length L, that is, much larger
than the others (i.e., elongated, rod-like, or worm-like), then there is a q range such that
qRc < 1 � qL, where α = 1. Here, Rc is the radius of gyration (computed about a
line centered along L) of the cross-section perpendicular to L. If these conditions apply,
the pre-factor A describes the excess differential cross section per unit length per unit
mass (cm2 Å−1 g−1). Finally, for planar shapes, including single bilayer vesicles, with
two locally large dimensions, D, and planar cross-sectional radius of gyration (computed
about a central plain),Rd, there may be a region of q such that qRd < 1 � qD, where
α = 2. For such planar structures, the pre-factor is the excess differential cross-section
per unit area per unit mass (cm2 Å−2 g−1) of a sheet.
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Figure 3.57. generalized Guinier law
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3.5. Clustered Objects

3.5.1. Mass Fractal [92, 91, 49, 57, 59, 58].

Figure 3.58.

Aggregates and clusters often have a fractal morphology. These self-similar clusters
are well described by

N = k0(Rg/r0)D (3.191)

where N is the number of primary particles or monomers in the aggregate, k0 is a
constant of order unity, Rg is the radius of gyration of the aggregate, r0 is the monomer
radius, and D is the fractal dimension.

The scattering function and the density autocorrelation function of the aggregate are
Fourier transform pairs; thus

I(q) = 4π

∞∫
0

g(r) r2 sin(qr)

qr
dr (3.192)

For a fractal aggregate the autocorrelation function has the form

g(r) ∼ rD−dh(r, ξ) (3.193)

Here D is the fractal dimension, d the spatial dimension, and ξ a measure of the linear
size of the aggregate proportional to the radius of gyration Rg. The function h(r, ξ) is
the cutoff function describing the perimeter of the aggregate. Its properties are that
h(r, ξ) ' 1 for r/ξ . 1, but for large r/ξ it falls off faster than any power law.
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Table 2. Scattering functions I(q) for different cutoff functions h(r, ξ).

SASfit-name h(r, ξ) ξ2 I(q) Ref.

Fischer-Burford ca. exp
[
− r
ξ

]
R2
g/3 (1+ 2

3D
q2R2

g)
−D/2

MassFractExp exp
[
− r
ξ

] 2R2
g

D(D+1)
sin[(D−1) arctan(qξ)]

(D−1)qξ(1+q2ξ2)(D−1)/2

MassFractGauss exp

[
−
(
r
ξ

)2
]

4R2
g

D
e−

q2R2
g

D 1F1

[
3−D

2
, 3
2
,
q2R2

g
D

]
Aggregate

(Exp(-xˆa) Cut-Off)
exp
[
−
(
r
ξ

)α]
— numerical

Aggregate
(OverlapSph Cut-Off)


(

1+
r
4ξ

)(
1− r

2ξ

)2
, r<2ξ

0, r≥2ξ

(D+2)(D+5)
2D(D+1)

R2
g numerical

DLCAggregate — —

1+

4∑
s=1

Cs(qRg)2s


−D/8

C1= 8
3
D,C2=2.5

C3=−1.52, C4=1.02

RLCAggregate — — C1= 8
3
D,C2=3.13

C3=−2.58, C4=0.95

Figure 3.59. Form factor for the different types of mass fractals listed in 2.
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3.5.2. Stacked Discs [56, 40].

Figure 3.60. Sketch for a stack of discs with an additional surface layer

IStackedDiscs(Q,R) =

π/2∫
0

(∆ηl (Vtft − Vcfc) + ∆ηcVcfc)
2 S(Q,Θ) sin(Θ) dΘ

(3.194)

Here it is assume that the nearest neighbor distance between the platelets obeys a
Gaussian distribution and consider an internal structure factor, S(Q,Θ), first proposed
by Kratky and Porod in 1949 [56]

S(Q,Θ) = 1 +
2

n

n−1∑
k=1

(n− k) cos(kDQ cos(Θ)) exp

(
−k

2
(Q cos(Θ)σD)2

)
(3.195)

ft = ft =
sin
(
Q(d

2
+ h) cos(Θ)

)
Q(d

2
+ h) cos(Θ)

2
J1(QR sin(Θ))

QR sin(Θ)
(3.196)

fc = fc =
sin
(
Qd

2
cos(Θ)

)
Qd

2
cos(Θ)

2
J1(QR sin(Θ))

QR sin(Θ)
(3.197)

Vt = πR2(d+ 2h) (3.198)

Vc = πR2d (3.199)
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Figure 3.61. Scattering Intensity for a stack of discs with a layer.
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3.5.3. DumbbellShell.

Figure 3.62.
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3.5.4. DoubleShellChain.

Figure 3.63.

Figure 3.64.

Figure 3.65.
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3.5.5. TetrahedronDoubleShell.

Figure 3.66.

Figure 3.67.

Figure 3.68.



3.6. CYLINDRICAL OBJECTS 141

3.6. Cylindrical Objects

3.6.1. Disc.

Figure 3.69.

IDisc(q, R) = π2R4∆η2 2

(qR)2

(
1− 1

qR
J1(2qR)

)
(3.200)

with lim
q=0

IDisc(q, R) = π2R4∆η2

Input Parameters for model Disc:

R: radius of disc R
eta: scattering contrast ∆η

Note:

• none

Figure 3.70. Scattering intensity of a disc with radii R = 10 nm and
R = 30 nm. The scattering length density contrast is set to 1.
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3.6.2. Rod.

Figure 3.71.

IRod(q, L) = ∆η2L2

(
2

qL
Si(qL)− sin(qL/2)

qL/2

)
(3.201)

with Si(x) =

x∫
0

sin t

t
dt and lim

q=0
IRod(q, L) = ∆η2L2

Input Parameters for model Rod:

L: length of rod L
eta: scattering contrast ∆η

Note:

• none

Figure 3.72. Scattering intensity of a rod of length L = 10 nm and
L = 30 nm. The scattering length density contrast is set to 1.
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3.6.3. Porod’s approximation for a long cylinder [80].

Figure 3.73.

Siπ
2
(x) =

(
Si(x) +

cosx

x
+

sinx

x2

)
x→∞−−−→ π

2
(3.202)

Λ1(x) =
2

x
J1(x) (3.203)

Λ2(x) =
8

x2
J2(x) (3.204)

Φdisc(x) =
2

x2
[1− Λ1(x)] (3.205)

Φlong(q, R, L) =
(
∆ηπR2L

)2 2

QL
(3.206)

×
{

Siπ
2
(QL)Λ2

1(QR)− 2Λ2(2QR)− Φdisc(2QR)

QL
− sin(QL)

(QL)2

}

Input Parameters for model LongCylinder:

R: radius of cylinder R
L: length of cylinder L
eta: scattering contrast ∆η

Note:

• The approximation is valid for L > 2R
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Figure 3.74. Scattering intensity of a cylinder with radius R = 10 nm
and lengths of L = 20 nm and L = 50 nm. Next to Porod’s axproximation
for long cylinders also the exact integral solution is shown for comparison.
The scattering length density contrast is set to 1.
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3.6.4. Porod’s approximation for a flat cylinder [80].

Figure 3.75.

Λ1(x) =
2

x
J1(x) (3.207)

I1(x) =

x∫
0

Λ1(x′)dx′ = πx [J0(x)HStruve(1, x)− J1(x)HStruve(0, x)]

(3.208)

I0(x) =
I1(x) + xΛ1(x)

2
(3.209)

Ω(x) =
2

x
[I0(x)− 2J1(x)] (3.210)

χ(x) =

(
sin(x/2)

x/2

)2

(3.211)

Φflat(q, R, L) =
(
∆ηπR2L

)2 8

(2qR)2
(3.212)

×
{
χ(qL) +

I1(2QR) Ω(qL)

2qR
− Λ1(2qR)

}

Input Parameters for model FlatCylinder:

R: radius of cylinder R
L: length of cylinder L
eta: scattering contrast ∆η

Note:

• The approximation is valid for L < 2R
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Figure 3.76. Scattering intensity of a cylinder with radius R = 10 nm
and lengths of L = 2 nm and L = 20 nm. Next to Porod’s axproximation
for flat cylinders also the exact integral solution is shown for comparison.
The scattering length density contrast is set to 1.
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3.6.5. Porod’s approximations for cylinder [80].

Figure 3.77.

This form factor combines the two solutions of Porod for a long Φlong(q, R, L) (3.206)
and a flat Φflat(q, R, L) (3.212) cylinder by a linear combination of both. A simple linear
transition at L = 2R is assumed.

ΦPorod(q, R, L) = p

(
2R

L

)
Φflat(q, R, L) +

(
1− p

(
2R

L

))
Φlong(q, R, L)

(3.213)

p(x) =


1 for x > 5

4

2
(
x− 3

4

)
for 3

4
≤ x ≤ 5

4

0 for x < 3
4

(3.214)

Input Parameters for model PorodCylinder:

R: radius of cylinder R
L: length of cylinder L
eta: scattering contrast ∆η

Note:

• less good approximation for L ∼ 2R
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Figure 3.78. Scattering intensity of a cylinder with radius R = 10 nm
and lengths of L = 2 nm, L = 20 nm, and L = 50 nm. Next to Porod’s
axproximation for a cylinders also the exact integral solution is shown for
comparison. The scattering length density contrast is set to 1.
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3.6.6. Cylinder of length L, radius R and scattering contrast ∆η.

Figure 3.79.

Icyl = 16(πR2L)2∆η2

1∫
0

(
J1

(
QR
√

1− x2
)

sin(QLx/2)

Q2R
√

1− x2 Lx

)2

dx (3.215)

Input Parameters for model Cylinder:

R: radius of cylinder R
L: length of cylinder L
eta: scattering contrast ∆η

Note:

• None

Figure 3.80. Scattering intensity of a cylinder for different radii radius
R nm and lengths L. The scattering length density contrast is set to 1.
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3.6.7. Random oriented cylindrical shell with circular cross-section.

Figure 3.81. cylindrical shell with circular cross-section

To different versions for a random oriented cylindrical shell with a circular cross-
section has been implemented. One without CylShell1 and one with CylShell2 capped
ends. For very long cylinders a faster approximation for the uncapped version can be
used LongCylShell

KCyl(Q,∆η,R, L, x) = 2πR2L∆η
J1

(
QR
√

1− x2
)

QR
√

1− x2

sin(QLx/2)

QLx/2
(3.216)

ICylShell1 =

1∫
0

(
KCyl (Q, ηcore − ηshell, R, L, x) (3.217)

+KCyl (Q, ηshell − ηsolv, R + ∆R,L, x)

)2

dx

ICylShell2 =

1∫
0

(
KCyl (Q, ηcore − ηshell, R, L, x) (3.218)

+KCyl (Q, ηshell − ηsolv, R + ∆R,L+ 2∆R, x)

)2

dx
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ILongCylShell(Q) =P ′(Q)Pcs(Q) (3.219)

P ′(Q) =2
Si(QL)

QL
−
(

sin(QL/2)

QL/2

)
(3.220)

Si(x) =

x∫
0

sin t

t
dt (3.221)

Pcs(Q) =

(
2
J1(QR)

QR
(ηcore − ηshell)R

2Lπ+ (3.222)

2
J1(Q(R + ∆R))

Q(R + ∆R)
(ηshell − ηsolv) (R + ∆R)2Lπ

)2

Input Parameters for models CylShell1, CylShell2 and LongCylShell:

R: core radius R
DR: shell thickness ∆R
L: cylinder length L
eta core: scattering length density ηcore of cylinder core
eta shell: scattering length density ηshell of cylinder shell
eta solv: scattering length density ηsolv of solvent

Note:

• The approximation for a long cylindrical shell (LongCylShell) only holds for
L� 2R.

Figure 3.82. Scattering intensity of a cylinder shell CylShell1.
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Figure 3.83. Scattering intensity of a cylinder shell CylShell2.
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3.6.8. Random oriented cylindrical shell with elliptical cross-section.

Figure 3.84. cylindrical shell with elliptical cross-section

To different versions for a random oriented cylindrical shell with an elliptical cross-
section has been implemented. One without ellCylShell1 and one with ellCylShell2

capped ends.

KellCyl(q,∆η,R, ε, L, t, φ, α) = πεR(εR + t)L∆η (3.223)

× 2J1 (qr(R, ε, φ, α))

qr(R, ε, φ, α)

sin(qL
2

cos(α))

qL
2

cos(α)

r(R, ε, t, φ, α) =
√
R2 sin2(φ) + (εR + t)2 cos2(φ) sin(α) (3.224)

IellCylShell1(q) =
2

π

π
2∫

0

π
2∫

0

(
KellCyl (q, ηcore−ηshell, R, ε, L, 0, φ, α) (3.225)

+KellCyl (q, ηshell−ηsol, R, ε, L, t, φ, α)

)2

sin(α) dα dφ

IellCylShell2(q) =
2

π

π
2∫

0

π
2∫

0

(
KellCyl (q, ηcore−ηshell, R, ε, L, 0, φ, α) (3.226)

+KellCyl (q, ηshell−ηsol, R, ε, L+2t, t, φ, α)

)2

sin(α) dα dφ

Input Parameters for models ellCylShell1 and ellCylShell2:

R: core radius R
epsilon: eccentricity ε of cross-section
L: cylinder length L
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t: shell thickness t
eta core: scattering length density ηcore of cylinder core
eta shell: scattering length density ηshell of cylinder shell
eta sol: scattering length density ηsol of solvent

Figure 3.85. Scattering intensity of a cylinder with elliptical cross-section.

Figure 3.86. Scattering intensity of a cylinder with elliptical cross-
section with and without capped ends.
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For very long cylinders a faster approximation for the uncapped version can be used
Pcs:ellCylSh combined with the structure factor P’(Q):Rod. The implemented ap-
proximation is the following

ILong ellCylShell(q) =P ′(q)Pcs(q) (3.227)

P ′(q) =2
Si(qL)

qL
−
(

sin(qL/2)

qL/2

)
(3.228)

Si(x) =

x∫
0

sin t

t
dt (3.229)

r(R, ε, φ) =
√
R2 sin2(φ) + (εR + t)2 cos2(φ) (3.230)

Pcs(q) =
2

π

π
2∫

0

(
2J1(qr(R, ε, φ))

qr(R, ε, φ)
(ηcore − ηshell) εR

2Lπ+ (3.231)

2J1(q(r(R, ε, φ) + t))

Q(r(R, ε, φ) + t)
(ηshell − ηsol) (R + t)(εR + t)Lπ

)2

dφ

Input Parameters for model Pcs:ellCylSh:

R: core radius R
epsilon: eccentricity ε of cross-section
t: shell thickness t
eta core: scattering length density ηcore of cylinder core
eta shell: scattering length density ηshell of cylinder shell
eta sol: scattering length density ηsol of solvent
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Figure 3.87. Scattering intensity of a cylinder with elliptical cross-
section. The exact solutions ellCylShell1 (dotted lines) are compared
with Pcs:ellCylSh (solid lines), which is only valid for very long cylinders
L� 2R.



3.6. CYLINDRICAL OBJECTS 157

3.6.9. partly aligned cylindrical shell [42].

Figure 3.88. Sketch of relative orientation n of partly aligned cylinders
or discs to the scattering vector Q.

The scattering amplitude of a cylindrical shell is given by

KCylShell (Q, . . . , γ) =KCyl (Q, ηcore − ηshell, R, L, γ) (3.232)

+KCyl (Q, ηshell − ηsolv, R + ∆R,L, γ) (3.233)

with

KCyl(Q,∆η,R, L, γ) = 2πR2L∆η
J1 (QR sin γ)

QR sin γ

sin
(
QL
2

cos γ
)

QL
2

cos γ
(3.234)

where γ is the angle between Q and the cylinder axis n. L is the length of the cylinder, R
its radius, ∆η the scattering length density contrast relative to the solvent and J1(x) is
the first order Bessel function of the first kind. γ can be calculated from the orientation
(θ, φ) of the cylinder and the direction of the scattering vector ψ in the plane of the
detector by

Q

|Q|
=

cosψ
0

sinψ

 n

|n|
=

 cos θ
sin θ sinφ
sin θ cosφ

 (3.235)

cos](Q,n) = cos γ =
Q · n
|Q||n|

= cosψ cos θ + sinψ sin θ cosφ (3.236)
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If the orientation distribution of the orientation vector n is described by p(θ, φ) so that
the scattering intensity is given by

Ip.a.CylShell(Q) =

π∫
0

dθ

2π∫
0

dφ KCylShell (Q, . . . , γ) p(θ, φ) sin(θ) (3.237)

For this form factor it is assumed that the orientation distribution is independent of φ, i.e.
p(θ, φ) = p(θ) and that p(θ) = p(π − θ), which means that turning the cylinder by 180◦

results in the same scattering intensity. Instead of assuming a special parametrization
of p(θ) the orientation distribution was expanded in terms of Legendre polynomials
Pl(cos(θ))

p(θ) =
∞∑

l=0,even

2l + 1

2
〈Pl〉 Pl(cos(θ)) (3.238)

Due to the symmetrie p(θ) = p(π − θ) all terms with odd values for l are zero and only
the even terms needs to be considered. For this form factor the first three terms up to
l = 6 are implemented. As

∫ π
0
p(θ) sin θ dθ = 1 the zero order parameter is one 〈P0〉 = 1.

Input Parameters for model partly aligned CylShell:

R: core radius R
DR: shell thickness ∆R
L: cylinder length L
eta core: scattering length density ηcore of cylinder core
eta shell: scattering length density ηshell of cylinder shell
eta solv: scattering length density ηsolv of solvent
psi: direction ψ of the scattering vector in the plane of the detector
P2: order parameter 〈P2〉
P4: order parameter 〈P4〉
P6: order parameter 〈P6〉
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Figure 3.89. Scattering curve for partly aligned discs with radius R =
20nm, L = 5nm, ∆R = 0nm, and 〈P2〉 =0, 0.05, 0.1, 0.2, and 0.4. Higher
order parameters are set zero. I(Q) is calculated for ψ = 0◦ and ψ = 90◦.

3.6.10. aligned cylindrical shell [?].
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3.6.11. Torus with elliptical shell cross-section [51, 29].

Figure 3.90.

Ftorus(Q,Θ, R, x, ν,∆η) =

R+x∫
R−x

4πr∆η
J0(Qr sin Θ) sin(Qγ(r) cos Θ)

Q cos(Θ)
dr (3.239)

with γ(r) = ν
√
x2 − (r −R)2 (3.240)

Itorus(Q,R, a, ν,∆η) =

π/2∫
0

|Ftorus(Q,Θ, R, a, ν,∆η)|2 sin Θ dΘ (3.241)



3.6. CYLINDRICAL OBJECTS 161

Itorus,sh(Q,R, a,∆a, ν,∆ηsh,∆ηc) =

π/2∫
0

∣∣∣Ftorus(Q,Θ, R, a+ ∆a, ν,∆ηsh) (3.242)

−Ftorus(Q,Θ, R, a, ν,∆ηc)
∣∣∣2 sin Θ dΘ

An alternative form factor for Ftorus following [29] is

Ftorus(Q,Θ, R, x, ν,∆η) = 2π

x∫
−x

[
R(+)J1(QR(+) sin θ) (3.243)

−R(−)J1(QR(−) sin θ)

]
cos(Qz cos θ)

Q sin θ
dz

with R(±) = R± ν
√
x2 − z2

Figure 3.91. Scattering intensity of a torus.



162 3. FORM FACTORS

3.6.12. stacked tori with elliptical shell cross-section.

Figure 3.92.

Fstackedtori(Q,Θ, R, x, ν,∆η,∆D,N) = (3.244)

N∑
n=1

R+x∫
R−x

4πr∆η
J0(Qr sin Θ) sin(Q(γ(r) + 2(n−1)−(N−1)

4
∆D) cos Θ)

Q cos(Θ)
dr

The scattering intensity is than calculated in the same way as for a single torus with an
elliptical shell cross-section.
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3.7. Local Planar Objects

The form factor of very anisotropic particles with local planar geometry can be
shown to factorize (see, e.g. [80]) into a cross-section form factor Pcs(Q) for the shorter
dimensions and a shape factor P ′(Q) for the larger dimension:

Pplanar(Q) = P ′(Q)Pcs(Q) (3.245)

The factorization in the cross-section factor Pcs(Q), which only depends on param-
eters describing the inner structure of the layer with short dimensions and the shape
factor P ′(Q), describing the overall shape in the larger dimension has the big advantage
when both the shorter dimension as well as the larger dimensions have a polydispersity.
In this case we do not end up with a double integral but rather a product of two inte-
grals when both a short and a large dimension have a polydispersity. This speeds up the
numerical computation significantly. Therefore the following form factors already have
a polydispersity parameter included.

3.7.1. Shape factors P ′(Q).
The shape form factor P ′(Q) are normalized for Q → 0 on the squared surface
area S (limQ→0 P

′(Q) = S2) and can be that of an infinitely thin disc, spherical
shell, elliptical shell, or cylindrical shell: The shape factors are accessible as a struc-
ture factor under [anisotropic obj.|P’(Q):local planar geometry|P’(Q) xxx]

and using the monodisperse approximation. Actually these shape factors are
foreseen to be used with the cross-section factors available as form factors under
[anisotropic obj.|Pcs(Q) for planar obj.|Pcs(Q) xxx]. The shape factors are
also available in combination with some cross-section factors as form factors under
[planar obj.].

3.7.1.1. Polydisperse infinitesimal thin discs.

P ′disc(Q,R) =
2π2R4

(QR)2

(
1− J1(2QR)

QR

)
(3.246)

The polydispersity is included as a LogNormal-distribution from section 5.4 by

P ′ThinDiscs(Q,R, σ) =

∞∫
0

LogNorm(R′, R, σ, 1)P ′disc(Q,R
′) dR′ (3.247)

3.7.1.2. Infinitesimal thin spherical shell.

P ′sph. shell(Q,R) =

(
4πR2 sinQR

QR

)2

(3.248)

(3.249)
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3.7.1.3. Infinitesimal thin elliptical shell.

P ′ell. shell(Q,R, ε) = S2

π/2∫
0

 sin
(
QR
√

sin2 α + ε2 cos2 α
)

QR
√

sin2 α + ε2 cos2 α

2

sin(α) dα (3.250)

with S =


4πR2 for ε = 1

2πR2
(

1 + ε arccos(1/ε)
tan(arccos(1/ε))

)
for ε > 1

2πR2
(

1 + εarctanh(sin(arccos(ε)))
sin(arccos(ε))

)
for ε < 1

(3.251)

3.7.1.4. Infinitesimal thin cylindrical shell.

P ′closed cyl. sh.(Q,R,H) =

π/2∫
0

(
2πR2 + 2πRH

)2

(
R

R +H

2J1 (QR sin(α))

QR sin(α)
cos(QH cos(α)/2)+

H

R +H
J0(QR sinα)

sin(QH cos(α)/2)

QH cos(α)/2

)2

sin(α) dα (3.252)
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3.7.2. Cross-section form factors Pcs(Q).
3.7.2.1. homogeneousXS.

Figure 3.93. Planar object with homogeneous cross-section.

Pcs(Q, η, L) =

(
ηL

sin(QL/2)

QL/2

)2

(3.253)
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3.7.3. TwoInfinitelyThinPlates.

Figure 3.94. planar2thin.

Pcs(Q, η, L) = η2 cos2(QL/2) (3.254)



3.7. LOCAL PLANAR OBJECTS 167

3.7.4. LayeredCentroSymmetricXS.

Figure 3.95. planar2centrosymHomo.

A layered centro symmetric cross-section structure with outer thickness Lout and
a core of thickness Lc, where the core and the outer part have the scattering lengths
density ηout and ηc, respectively, has

Pcs(Q, ηout, Lout, ηc, Lc) =

(
ηoutLout sin

(
QLout

2

)
QLout/2

(3.255)

−
(ηout − ηc)Lc sin

(
QLc

2

)
QLc/2

)2
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3.7.5. BiLayerGauss.

Figure 3.96. bilayerprof.

uout = Qσout (3.256)

ucore = Qσcore (3.257)

Fout =
√

2π σoutbout exp(−u2
out/2) cos(Qt/2) (3.258)

Fcore =
√

2π σcorebcore exp(−u2
core/2) (3.259)

Pcs = (Fcore + 2Fout)
2 (3.260)
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3.8. Sheared Objects

3.8.1. ShearedCylinderHayterPenfold [42].

Figure 3.97. Shear orientation of micelles in a shear cell with the corre-
sponding SANS-pattern.

The scattering from monodisperse dilute (non-interacting) isotropic solution of
anisotropic micelles is given by

I(Q) =
〈
|F (Q)|2

〉
Q

(3.261)

where F (Q) is the form factor for a micelle at a given orientation relative to the mo-
mentum transfer Q and 〈〉Q denotes an average over all such orientations.

For a uniform cylinder of length L and diameter 2R the form factor is given by:

F (Q) = F (Q, γ) = 2∆ηV
sin (QL/2 cos γ)

QL/2 cos γ

J1(QR sin γ)

QR sin γ
(3.262)

where γ is the angle between Q and the cylinder axis, V is the volume, ∆η the scattering
length density contrast relative to the solvent, J1(x) is the first order Bessel function of
the first kind.

The scattering geometry for shear alignment is shown in Fig. 3.98. In general perfect
alignment will not be achieved, and an orientation distribution must be employed such
that the resultant scattering will be given by

I(Q,ψ) =

2π∫
0

dΦ

π∫
0

p(θ, Φ; Γ)
(
F 2(Q, γ+) + F 2(Q, γ−)

)
sin θdθ (3.263)

where

cos γ± = sin θ cosφ cosψ ± cos θ sinψ (3.264)

p(θ, φ; Γ) =
(1− cos 2Φ0)(1 + sin2 θ cos 2Φ0)3/2

4π
[
1− sin2 θ cos 2Φ0 cos 2(φ− Φ0)

]2 (3.265)

and

2Φ0 = arctan(8/Γ) (3.266)



170 3. FORM FACTORS

Figure 3.98. Cartesian and angular coordinates referred to the center
of a cylindrical micelle at origin. The relationship to the spectrometer
geometry is shown schematically. The momentum transfer, Q, lies in the
z − x plane.

Q

|Q|
=

cosψ
0

sinψ

 n

|n|
=

sin θ cosφ
sin θ sinφ

cos θ

 (3.267)

cos∠(Q,n) = cos γ =
Q · n
|Q||n|

= cosψ sin θ cosφ+ sinψ cos θ (3.268)
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3.8.2. ShearedCylinderBoltzmann.

p(θ, φ; θ̄) = exp(−θ/θ̄) (3.269)

cos γ± = sin θ cosφ cosψ ± cos θ sinψ (3.270)
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3.8.3. ShearedCylinderGaussian.

p(θ, φ; θ̄) = exp(−(θ/θ̄)2) (3.271)

cos γ± = sin θ cosφ cosψ ± cos θ sinψ (3.272)
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3.8.4. ShearedCylinderHeaviside.

p(θ, φ; θ̄) = Θ[θ − θ̄] (3.273)

cos γ± = sin θ cosφ cosψ ± cos θ sinψ (3.274)
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3.9. Magnetic Scattering

In the case of magnetic moments in the sample, the neutron undergoes a magnetic in-
teraction in addition to the nuclear interaction. The corresponding interaction potential
is given by

V (r) = −µN ·B(r) with µN = γ
e~

2mNc
σ

where µN = γ e~
2mN c

σ is the magnetic dipole moment of the neutron, σ the Pauli spin

operator, γ = −1.913 the gyromagnetic ratio and B(r) the magnetic field induced by
an atom at the position of the neutron. The latter has two components, one induced
by the magnetic dipole moment µS of the electrons, denoted BS(r), and one by their
orbital moment µL, denoted BL(r). The (weak) magnetic interaction V (r) = −µN ·
(BS(r) + BL(r)) can as well be treated in first Born approximation, resulting in the
magnetic scattering amplitude, in analogy to the nuclear scattering amplitude, given by
the Fourier transform of the magnetic interaction potential F [V (r)]:

bM = − mN

2π~2
µN ·

∫
d3r eıQr (BS(r) +BL(r)). (3.275)

An additional static magnetic field H(r) at the point of local magnetization H(r)
(stemming from BS(r) +BL(r)) induces a total local magnetic induction of

B(r) = µ0(H(r) +M(r))

and the Fourier transform of yields

B(Q) = µ0
Q× [M(Q)×Q]

Q2
= µ0M⊥(Q) = µ0M (Q) sin(∠(Q,M))

(3.276)

where M (Q) =
∫
d3r exp(ıQ · r)M(r) , with M(r) given in units of Am. M⊥(Q) =

Q × [M(Q) ×Q]/Q2 is the magnetization component perpendicular to the scattering
vector Q. The magnetic scattering length then is

bM = DM µ0 σ ·M⊥(Q) with DM =
mN

2π~2
µN = 2.3161× 1014 1

Vs
. (3.277)

For the differential scattering cross section one finally obtains

dσM
dΩ

(Q) =
D2
M

N
|µ0M⊥(Q)|2 (3.278)

In the presence of a preferred direction, for example induced by an external magnetic
field, the magnetic scattering depends on the spin state of the neutrons. Let the z-axis
be the preferred direction, and let (+) and (−) denote the neutron spin polarizations
parallel and antiparallel to the z-axis, then the scattering is described by four scatter-
ing processes: two processes where the incident states (+) and (−) remain unchanged
(++ and −−), the so-called ’non-spin-flip’ processes, and two processes where the spin
is flipped (+− and −+), the ’spin-flip’ processes. Keeping in mind that the nuclear
scattering does not flip the neutron spin, the four related scattering lengths are
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b±± = bN ∓DM µ0M⊥x (3.279)

b±∓ = −DM µ0 (M⊥z ± ıM⊥y). (3.280)

Hereby bN is the nuclear scattering length. For an unpolarized neutron beam (which
may be taken as composed of 50% (+) and 50% (−) polarization) the square of the
modulus of the scattering length is

(b2
++ + b2

−− + b2
+− + b2

−+)/2 = b2
N +D2

Mµ
2
0M

2
⊥. (3.281)

The differential cross section of the unpolarized neutron beam can therefore be described
by the sum of the nuclear and the magnetic cross section, without any cross terms.
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3.9.1. Magnetic Saturation.
3.9.1.1. MagneticShellAniso.

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.282)

Ksh(Q,R,∆R,∆ηsh,∆ηc) = K(Q,R + ∆R,∆ηsh)−K(Q,R,∆ηc)
(3.283)

KNUC(Q) = Ksh(Q,R,∆R, ηsh NUC − ηm NUC, ηc NUC − ηm NUC) (3.284)

KMAG(Q) = Ksh(Q,R,∆R, ηsh MAG − ηm MAG, ηc MAG − ηm MAG) (3.285)

I(Q) =
1− p

2

(
K2

MAG(Q) + 2KNUC(Q)KMAG(Q)
)

+
1 + p

2

(
K2

MAG(Q)− 2KNUC(Q)KMAG(Q)
)

(3.286)

= K2
MAG(Q)− 2pKNUC(Q)KMAG(Q) (3.287)

p : neutron polarization, p ∈ [−1 : 1]

R : radius of particle core

∆R : thickness of particle shell

ηsh NUC : nuclear scattering length density of particle shell

ηm NUC : nuclear scattering length density of matrix

ηc NUC : nuclear scattering length density of particle core

ηsh MAG : magnetic scattering length density of particle shell

ηm MAG : magnetic scattering length density of matrix

ηc MAG : magnetic scattering length density of particle core
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3.9.1.2. MagneticShellCrossTerm.

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.288)

Ksh(Q,R,∆R,∆ηsh,∆ηc) = K(Q,R + ∆R,∆ηsh)−K(Q,R,∆ηc)
(3.289)

KNUC(Q) = Ksh(Q,R,∆R, ηsh NUC − ηm NUC, ηc NUC − ηm NUC) (3.290)

KMAG(Q) = Ksh(Q,R,∆R, ηsh MAG − ηm MAG, ηc MAG − ηm MAG) (3.291)

I(Q) = 4pKNUC(Q)KMAG(Q) (3.292)

p : neutron polarization, p ∈ [−1 : 1]

R : radius of particle core

∆R : thickness of particle shell

ηsh NUC : nuclear scattering length density of particle shell

ηm NUC : nuclear scattering length density of matrix

ηc NUC : nuclear scattering length density of particle core

ηsh MAG : magnetic scattering length density of particle shell

ηm MAG : magnetic scattering length density of matrix

ηc MAG : magnetic scattering length density of particle core
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3.9.1.3. MagneticShellPsi.

K(Q,R,∆η) =
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3
(3.293)

Ksh(Q,R,∆R,∆ηsh,∆ηc) = K(Q,R + ∆R,∆ηsh)−K(Q,R,∆ηc)
(3.294)

KNUC(Q) = Ksh(Q,R,∆R, ηsh NUC − ηm NUC, ηc NUC − ηm NUC) (3.295)

KMAG(Q) = Ksh(Q,R,∆R, ηsh MAG − ηm MAG, ηc MAG − ηm MAG) (3.296)

I(Q) = K2
NUC(Q) +

(
K2

MAG(Q)− 2pKNUC(Q)KMAG(Q)
)

sin2 Ψ (3.297)

p : neutron polarization, p ∈ [−1 : 1]

R : radius of particle core

Ψ : angle between Q and H

∆R : thickness of particle shell

ηsh NUC : nuclear scattering length density of particle shell

ηm NUC : nuclear scattering length density of matrix

ηc NUC : nuclear scattering length density of particle core

ηsh MAG : magnetic scattering length density of particle shell

ηm MAG : magnetic scattering length density of matrix

ηc MAG : magnetic scattering length density of particle core
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3.9.2. Superparamagnetic Particles (like ferrofluids).

I±±(Q)

N
=
∣∣∣FN(Q)∓ F̃M(Q) [L(α)− γ] sin2 ε

∣∣∣2 (3.298)

+
∣∣∣F̃M(Q)

∣∣∣2 (L(α)

α
sin2 ε− L(α) sin4 ε

)

I∓±(Q)

N
=
(
sin2 ε− sin4 ε

)
[L(α)− γ]2

∣∣∣F̃M(Q)
∣∣∣2 (3.299)

+
∣∣∣F̃M(Q)

∣∣∣2((sin4 ε− sin2 ε
)
L(α) + (2− sin2 ε)

L(α)

α

)

Iunp(Q) =
1

2
(I++(Q) + I+−(Q) + I−−(Q) + I−+(Q))

= N

(∣∣∣F̃M(Q)
∣∣∣2 [L(α)− γ]2 sin2 ε+ |FN(Q)|2

)
(3.300)

+N
∣∣∣F̃M(Q)

∣∣∣2 (2
L(α)

α
− L(α) sin2 ε

)
Hereby L(α) = cothα− 1

α
is the classical Langevin function with

α = µ0(H +Meff)M cr
s VP/kT .

Furthermore the following functions are defined as:

L(α) = L2(α)− 1 + 3 L(α)
α

,
FN(Q) = ∆η VN fN(Q),
F̃M(Q) = DM M cr

s VM fM(Q) and
γ = Mam

s /M cr
s .

ε describes the angle between Q and the applied magnetic field B. If the magnetic field
lies in the plane of the detector, i.e. perpendicular to the incoming beam direction, ε is
in practice identical to Ψ so that cos ε = sin δ cos Ψ ' cos Ψ for δ ' π/2 (Q in plane of
detector for SANS, only for large scattering angle this will change).

3.9.2.1. SuperparamagneticFFpsi.
3.9.2.2. SuperparamagneticFFAniso.
3.9.2.3. SuperparamagneticFFIso.
3.9.2.4. SuperparamagneticFFCrossTerm.
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3.10. Lorenz-Mie Form Factors for Static Light Scattering

Mie theory, also called Lorenz-Mie theory [64, 99, 12], is a complete mathematical-
physical theory of the scattering of electromagnetic radiation by spherical particles. Mie
theory is named after its developer German physicist Gustav Mie (1868 Rostock - 1957
Freiburg im Breisgau) and Danish physicist Ludvig Lorenz (1829-1891) who indepen-
dently developed the theory of electromagnetic plane wave scattering by a dielectric
sphere in 1908.

Mie scattering describes the scattering of electromagnetic radiation by spherical par-
ticles of any size r, relative to the wavelength, λ. Since the cases r � λ and r � λ are
covered by Rayleigh (dipole) scattering and geometric scattering theories, respectively,
Mie scattering often refers to the case of r ∼ λ.

3.10.1. MieSphere.

The Mie scattering formulae are given in several books (Van de Hulst, 1957; Kerker,
1969; Deirmendjian, 1969) and by Dave (1968a, 1969a), although not always in the forms
most suited to computation. The algorithm used here is based on the MIEV0 package
described in [105, 106]. The following input values are used:

Θ = 2 arcsin(Qλ/(4π)) with Q < Qmax = 4π/λ

R = radius of scattering sphere

λ = wavelength of incident plane wave inside the solvent

m = complex refractive index of sphere relative to surrounding medium

= mre − imim

|m| ≥ 1 and mim ≥ 0

or

|m| < 1 and mim = 0

pol = 0 unpolarized light

pol = 1 parallel to scattering plane polarized light

pol = −1 perpendicular to scattering plane polarized light

|m| < 1 would, for example, include visible light scattering from air bubbles in water.
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Figure 3.99. Scattering intensity of a sphere using the formalism for Mie
scattering. The data are normalized to one for q = 0.
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3.10.2. MieShell.

This form factor is basing on the version of MieLay, which computes electromag-
netic scattering by a stratified sphere, i.e. a particle consisting of a spherical core
surrounded by a spherical shell. The surrounding medium is assumed to have refractive
index unity. The formulas, manipulated to avoid the ill-conditioning that plagued ear-
lier formulations, were published in [97]. Further documentation, including definitons
of input and output arguments, is inside the single precision version of this program
(SUBROUTINE MieLay, available by anonymous ftp from climate.gsfc.nasa.gov in di-
rectory pub/wiscombe). The following input values are used:

Θ = 2 arcsin(Qλ/(4π)) with Q < Qmax = 4π/λ

Rc = radius of the core of scattering sphere

Rsh = thickness of the shell of scattering sphere

λ = wavelength of incident plane wave inside the solvent

mc = complex refractive index of core relative to surrounding medium

= mc,re − imc,im

|mc| ≥ 1 and mc,im ≥ 0

or

|mc| < 1 and mc,im = 0

ms = complex refractive index of core relative to surrounding medium

= ms,re − ims,im

pol = 0 unpolarized light

pol = 1 parallel to scattering plane polarized light

pol = −1 perpendicular to scattering plane polarized light

|m| < 1 would, for example, include visible light scattering from air bubbles in water.
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Figure 3.100. Scattering intensity of a spherical shell using the formal-
ism for Mie scattering. The data are normalized to one for q = 0.
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3.11. Other functions
3.11.1. DLS Sphere RDG.

This function has been implemented to simulate the relaxation signal g2(t)−1 = g2
1(t)

of a DLS (dynamic light scattering) measurement. The Q dependent contribution to the
relaxation signal by particles of different radius R is considered by weighting g2(t) − 1
with the form factor of sperical particles in Raylay-Debye-Gans approximation:

IDLS Sphere RDG(t, η, T,Q) =

∞∫
0

N(R) K2
sp(Q,R) e−DQ

2t dR (3.301)

with

D =
kBT

6πηR

Ksp(Q,R) =
4

3
πR3 3

sinQR−QR cosQR

(QR)3

R : radius

T : temperature

η : viscosity

Q : scattering vector
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3.11.2. Langevin.

This function has been implemented to simulate the magnetisation curve M(B) of
superparamagnetic particles following the Langevin statistics with a size distribution
N(R): Magnetization curve of superparamagnetic particles with magnetization a Ms at
temperature T

M(B) =

∞∫
0

N(R) 4
3
πR3Mp(B,R) dR

∞∫
0

N(R)4
3
πR3 dR

(3.302)

Mp(B,R) = M∞
(
coth(α)− 1

α

)
α =

BMs
4
3
πR3

kBT
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3.11.3. SuperParStroboPsi.

In the following the scattering of polarized incident neutrons with polarization anal-
ysis (POLARIS) is described. Experimental measured scattering signal are always a
mixture of the spin dependent scattering cross-sections I±±(Q) and I±∓(Q). The rel-
ative contribution of these cross-sections to the measured cross-section depend on the
polarisation of the polarizer Ppol the efficiency of the spin flipper ε and the transmission
values T± of the polarization analyzer, which is assumed to be an opaque He-filter. If
the neutron polarization of the polarizer is Ppol ∈ [−1; 1] and the spin flipper is off the
incident polarisation on the sample Pin is given by

Pin = Ppol =
N+ −N−
N+ +N−

= n+ − n− (3.303a)

with

n+ =
N+

N+ +N−
and n− =

N−
N+ +N−

(3.303b)

⇒ n+ =
1 + Ppol

2
and n− =

1− Ppol
2

(3.303c)

N± are the number of incident neutrons with spin polarizations up (+) and down (−).
After switching on the spin flipper, which works with an efficiency of ε ∈ [0; 1] (ε = 0:
flipper off, ε / 1 : flipper on), one gets

n+(Ppol, ε) = ε
1− Ppol

2
+ (1− ε) 1 + Ppol

2
and

n−(Ppol, ε) = ε
1 + Ppol

2
+ (1− ε) 1− Ppol

2

(3.304)

The efficiency of the analyzer to filter spin up (+) or spin down (−) neutrons is given in
case of an opaque spin filter by its transmission T±(t) ∈ [0; 1], which can be a function
of time, so that the measured scattering cross section Im(Q) is given by

Im(Q) = n+(Ppol, ε)T+(t)I++(Q) + n+(Ppol, ε)T−(t)I+−(Q)

+ n−(Ppol, ε)T−(t)I−−(Q) + n−(Ppol, ε)T+(t)I−+(Q)
(3.305)

The spin dependent scattering intensities of magnetic particles with an orientation dis-
tribution f (θ, φ) of its magnetic moment can easily be calculated in terms of order
parameters Sl if one assumes that the particle are spherical symmetric or the orienta-
tion of the magnetic moment of a particle is not correlated to the particle orientation.
Furthermore it will be assumed that an external magnetic field is applied perpendicular
to the incident neutron beam and that all orientations φ for a given angle θ, which is
defined as the angle between the magnetisation vector of the particle and the direction
of the external field B have the same probability, i.e. the orientation distribution only
depends on θ so that f (θ, φ) = f (θ). The orientation probability distribution function
can be expanded in terms of a complete set of orthogonal functions. Expanding it in
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terms of Legendre polynomials Pl(cos θ) gives

f(θ) =
∑
l

clPl(cos θ) =
∑
l

2l + 1

2
SlPl(cos θ) (3.306)

The expansion coefficients can be calculated by

cl =
2l + 1

2

π∫
0

f(θ)Pl(cos θ) sin θ dθ

or

Sl =

π∫
0

f(θ)Pl(cos θ) sin θ dθ

(3.307)

The first three Legendre polynomials are defined by

P0(cos θ) = 1 (3.308a)

P1(cos θ) = cos θ (3.308b)

P2(cos θ) =
1

2

(
3 cos2 θ − 1

)
(3.308c)

For superparamagnetic particle the orientation probability distribution is given by

f(θ) =
α

4π sinhα
exp(α cos θ) (3.309)

with α = BMpVp/(kBT ) being the Langevin parameter. For this orientation probability
distribution the first order parameters can be calculates as

S0 = 1 (3.310a)

S1 = L(α) = cothα− 1

α
(3.310b)

S2 = 1− 3
L(α)

α
(3.310c)

The scattering from a system of many particles is obtained by summing up the scattering
amplitudes of all precipitates weighted by the phase shift at each particle position. In
the decoupling approach scattering intensity is given by

dσ±±
±∓

dΩ
(Q) = N

{〈∣∣∣F±±
±∓

(Q)
∣∣∣2〉+

∣∣∣〈F±±
±∓

(Q)
〉∣∣∣2(S(Q)− 1)

}
(3.311)

which consists of two terms. The first one depends only on the particle structure and
corresponds to the independent scattering of N particles, while the second one is also a
function of their statistical distribution and reflects the interparticle interference, which
is described by S(Q). The 〈〉 indicates an average over all possible configurations, sizes
and orientations of the magnetic moments of the particles. The spin dependent scattering
amplitudes F±±

±∓
(Q) can be calculated from the nuclear and magnetic amplitudes

F±±(Q) = FN(Q)∓ FM⊥x(Q) (3.312)

F±∓(Q) = − (FM⊥y(Q)± ıFM⊥z(Q)) (3.313)
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The nuclear scattering amplitude is proportional to the nuclear excess scattering βN =
FN(Q = 0) and the nuclear form factor fN(Q)

FN(Q) = βNfN(Q) (3.314)

The magnetic scattering amplitude FM⊥(Q) can be described as a vector, with

FM⊥(Q) = µ̂⊥DMµfM(Q) = µ̂⊥FM(Q) (3.315)

where fM(Q) is the magnetic form factor, µ = M pVp the magnetic moment of the
particle, DM = γe

2π~ , and µ̂⊥ the Halpern-Johnson vector defined as

µ̂⊥ =
Q

Q
×
(
µ

µ
× Q
Q

)
(3.316)

It is assumed here that the neutron spin polarization is parallel or antiparallel to the
axes ex which is the direction perpendicular to the incoming neutron beam. If only
the Halpern-Johnson vector µ̂⊥ depends on the orientation distribution f(θ) of the
magnetic moments µ of the particles but not the form factor fM(Q), which is valid for
spherical symmetric particles or anisotropic shaped particles where the particle shape
is not correlated to the direction of the magnetic moment, the averages in 3.311 can be
written in terms of the order parameters S1 and S2

〈F±±(Q)〉 = FN(Q) + FM(Q)S1 sin2 ψ (3.317a)

〈F±∓(Q)〉 = FM(Q)S1 sinψ cosψ (3.317b)

〈
|F±±(Q)|2

〉
= |FN(Q)|2 + |FM(Q)|2

[
S2 sin4 ψ +

1− S2

3
sin2 ψ

]
∓ [FM(Q)F ∗N(Q) + F ∗M(Q)FN(Q)]S1 sin2 ψ

(3.317c)

〈
|F±∓(Q)|2

〉
= |FM(Q)|2

[
2

1− S2

3
− S2 sin4 ψ +

4S2 − 1

3
sin2 ψ

]
(3.317d)

The spin-flip and spin-nonflip cross-section
dσ±±
±∓

dΩ
(Q) can be obtained by combining 3.311

and 3.317. The cross-sections without polarization analysis I±(Q) and for unpolarized
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neutrons Iunp(Q) are given by

I±(Q) = I±±(Q) + I±∓(Q)

=
[
|FN(Q)|2 + |FM(Q)|2S2

1 sin2 ψ

∓ [FM(Q)F ∗N(Q) + F ∗M(Q)FN(Q)]S1 sin2 ψ
]
S(Q)

|FM(Q)|2
(

2

3
(1− S2) +

(
S2 − S2

1

)
sin2 ψ

) (3.318a)

Iunp(Q) =
1

2
(I+(Q) + I−(Q))

=
(
|FN(Q)|2 + |FM(Q)|2S2

1 sin2 ψ
)
S(Q)

+ |FM(Q)|2
(

2

3
(1− S2) +

(
S2 − S2

1

)
sin2 ψ

) (3.318b)

In the case of a Boltzmann orientation distribution f(θ) = exp
(
Bµ
kBT

)
=

exp
(
Bµ cos θ
kBT

)
the order parameter Sl already have been given in eq. 3.310 and the spin

dependent intensities can be written as

I±±(Q)

N
=
∣∣FM(Q)L(α) sin2 ψ ± FN(Q)

∣∣2S(Q) (3.319a)

+ |FM(Q)|2
(
L(α)

α
sin2 ψ −

(
L2(α)− 1 + 3

L(α)

α

)
sin4 ψ

)

I∓±(Q)

N
=
(
sin2 ψ − sin4 ψ

)
L2(α)|FM(Q)|2S(Q) (3.319b)

+ |FM(Q)|2
((

sin4 ψ − sin2 ψ
)(

L2(α)− 1 + 3
L(α)

α

)
+ (2− sin2 ψ)

L(α)

α

)
ψ is the angle between Q and the horizontal axis in the plane of the detector. L(α) =
coth(α)− 1

α
is the Langevin function. In the case of a static field the superparamagnetic

particle are thermodynamic equilibrium and α is given by

α =
BMPVP
kBT

, (3.320)

with MP being the particle magnetization, VP the particle volume, T the temperature
in Kelvin and kB the Boltzmann constant.

In our experiments we applied an oscillating magnetic field to the sample described
by:

B(t, ν; dSD, λ, ρ0) = B1 −B0 cos(φ(t, ν); . . . ) (3.321a)

φ(t, ν; dSD, λ, ρ0) = 2πν(t− dSDλ/3956) + ρ0 (3.321b)

where t in [s] is the time between neutron detection and the trigger signal from the
frequency generator, dSD in [m] is the sample detector distance, λ in [Å] the neutron
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wavelength, and ν in [Hz] the frequency of the oscillating magnetic field. As t is defined
here as the time of the neutron detection one has therefore to correct the phase in
the argument for the magnetic field with an additional phase term. The term tSD =
dSDλ/3956 takes into account the flight time tSD of the neutrons between the sample
and the detector. The term ρ0 accounts for any other additional constant phase shift
between trigger signal and the magnetic field due to phase shifts in the amplifier. If
the neutron polarization can follow adiabatically the varying magnetic field needs to be
verified experimentally. Therefore we introduce here a parameter aad ∈ [0; 1] which takes
into account wether (aad = 1) or not (aad = 0) the neutron spin adiabatically follows
the change of of magnetic field direction (sgn(B(t))).

rad =

(
aad

(1− aad)

)
and sad =

(
sgn(B(t))

1

)
(3.322)

The measured intensity than reads as

Im(Q, t) =
∑
i=1,2

rad,i

[
(3.323a)

n+ (sad,iPpol, ε)A+I++(Q, t) + n+ (sad,iPpol, ε)A−I+−(Q, t)

+ n− (sad,iPpol, ε)A−I−−(Q, t) + n− (sad,iPpol, ε)A+I−+(Q, t)

]

=
∑
i=1,2

∑
k,l=+,−

rad,i nk (sad,iPpol, ε) Al Ikl(Q, t) (3.323b)

with

A± =

(
1 + sad,2

2
rad,1 +

1 + sad,1
2

rad,2

)
T±(t)

+

(
1− sad,2

2
rad,1 +

1− sad,1
2

rad,2

)
T∓(t)

(3.323c)

To calculate the time dependent scattering cross section a model for the time evolution
of the orientation distribution of the magnetic moments f(θ, t) is needed, from which
the time dependent order parameter S1(t) and S2(t) can be obtained, as well as a model
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for the time evolution of the structure factor S(Q, t).

dM

dt
= −M(t)−M∞L(α′(t))

τ
(3.324a)

M(t = 0) = M0 (3.324b)

α′(t) = α0 cos(ωt+ φ0) + α1 (3.324c)

α0 =
−B0µ

kBT
(3.324d)

α1 =
B1µ

kBT
(3.324e)

ω = 2πν (3.324f)

φ0 = ϕ0 −
ωdSDλ

3956
(3.324g)

In the limit of small values for the Langevin parameter α the Langevin function can be
approximated by

L(α)→ α

3
(3.325)

for which the differential equation has an analytical solution

M(t) = e−
t
τ

[
M0 −M∞

(
α0

3

cos (φ0) + ωτ sin (φ0)

1 + ω2τ 2
+
α1

3

)]
+M∞

(
α0

3

cos (ω t+ φ0) + ωτ sin (ω t+ φ0)

1 + ω2τ 2
+
α1

3

)
(3.326)

'
t�τ

M∞

α0

3

cos
(
ω t+ φ0 − π

2
+ arcsin

(
1√

1+ω2τ2

))
√

1 + ω2τ 2
+
α1

3

 (3.327)

Assuming that the system is at any time in thermodynamic equilibrium with the
actual magnetic field B(t) than the time dependent oscillating SANS signal can be
described by simply introducing a time dependent value for α(t):

α(t, λ, dSD, ρ0, µkT) = B(t, λ, dSD, ρ0)
MPVP
kBT

= B(. . . ) µkT (3.328)

with

µkT =
MPVP
kBT

(3.329)

In case that the magnetic moments can not follow the external magnetic field this could
be described by an additional phase ∆φα between α and B and a damping factor dα so
that

α(t, λ, dSD, ρ0 −∆φα, µkT) = dαB(t, λ, dSD, ρ0 −∆φα)
MPVP
kBT

. (3.330)

In such a case of such

rad =

(
(1− aad) sgn(B(t))
aad sign(B(t)α(t))

)
(3.331)
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Furthermore we assume here that the size of the form factors of the magnetic and nuclear
scattering are the same except the scattering contrast that means the ratio of magnetic
to nuclear form factor is Q-independent and equal to the squared ratio of magnetic to
nuclear scattering length density

F 2
N(Q)

F̃ 2
M(Q)

= const =

(
∆bnuc

∆bmag

)2

(3.332)

Therefore the time dependent signal on the detector for a given direction ψ is given by

y(t, . . . ) =

λ0+∆λ∫
λ0−∆λ

p4(λ) Im(t, λ, ψ, . . . ) dλ (3.333)

whereby p4(λ) describes the triangular shaped wave length distribution of the neutron
beam.
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3.11.4. SuperParStroboPsiSQ.

The external applied field is given by:

B(t, dSD, λ, ρ0) = B1 −B0 cos(2πν(t− dSDλ/3956) + ρ0) (3.334)

where t in [s] is the time between neutron detection and the trigger signal from the
frequency generator, dSD in [m] is the sample detector distance, λ in [Å] the neutron
wavelength, and ν in [Hz] the frequency of the oscillating magnetic field. As t is defined
here as the time of the neutron detection one has therefore to correct the phase in the
argument for the magnetic field with an addition phase term. The term tSD = dSDλ/3956
takes account for the flight time tSD of the neutrons between the sample and the detector.
The term ρ0 takes account for any other additional constant phase shift between trigger
signal and the magnetic field due to phase shifts in the amplifier.

The scattering intensity of superparamagnetic particles including a structure factor
S(Q)is given by

I(Q) = F̃ 2
M(Q) 2

L(α)

α
+ F 2

N(Q)S(Q)︸ ︷︷ ︸
A(Q)

(3.335)

+ F̃ 2
M(Q)

[(
1− 3

L(α)

α
− L2(α)

)
+ L2(α)S(Q)

]
︸ ︷︷ ︸

B(Q)

sin2 Ψ

Assuming that the system is in equilibrium faster than 1/ν than the above equation can
be used to describe the time dependent oscillating SANS signal simply by introducing
a time dependent value for α:

α(t, λ, dSD, ρ0, µkT) = B(t, λ, dSD, ρ0)
MPVP
kBT

= B(. . . ) µkT (3.336)

with

µkT =
MPVP
kBT

(3.337)

Furthermore we assume here that the size of the form factors of the magnetic and nuclear
scattering are the same except the scattering contrast that means the ratio of magnetic
to nuclear form factor is Q-independent and equal to the squared ratio of magnetic to
nuclear scattering length density

F 2
N(Q)

F̃ 2
M(Q)

= const =

(
∆bnuc

∆bmag

)2

(3.338)
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Therefore the time dependent signal on the detector for a given direction Ψ and inte-
grated over Q in this direction is given by

i(t, . . . ) =

Qmin∫
Qmin

I(Q, t, λ,Ψ, dSD, ρ0)dQ (3.339)

= c

[
2
L(α)

α
+
F 2
N(Q)

F̃ 2
M(Q)

S(Q) +

[(
1− 3

L(α)

α
− L2(α)

)
+ L2(α)S(Q)

]
sin2 Ψ

]
= c

[
2
L(α)

α
+

(
∆bnuc

∆bmag

)2

S(Q) +

[(
1− 3

L(α)

α
− L2(α)

)
+ L2(α)S(Q)

]
sin2 Ψ

]

y(t, . . . ) =

λ0+∆λ∫
λ0−∆λ

p4(λ) i(t, λ,Ψ, dSD, ρ0) dλ (3.340)

whereby p4(λ) describes the triangular shaped wave length distribution of the neutron
beam.

3.11.5. SuperParStroboPsiSQBt.
The same as SuperParStroboPsiSQ except that the structure factor S(Q, t) becomes
field dependent:

S(Q, t) = 1 + [S(Q)− 1]

∣∣∣∣B(t, dSD, λ, ρ0)

|B1|+ 2
π
|B0|

∣∣∣∣ (3.341)

3.11.6. SuperParStroboPsiSQLx.
The same as SuperParStroboPsiSQ except that the structure factor S(Q, t) becomes
field dependent:

S(Q, t) = 1 + [S(Q)− 1] |L(α)| (3.342)
3.11.7. SuperParStroboPsiSQL2x.

The same as SuperParStroboPsiSQ except that the structure factor S(Q, t) becomes
field dependent:

S(Q, t) = 1 + [S(Q)− 1]L2(α) (3.343)



CHAPTER 4

Structure factors

The different types of structure factors can be selected in the different submenus. Be-
low one finds how they are ordered. The definitions of the individual structure factors are
defined below. Under the submenu other all structure factors under development and
those functions, which are not structure factors at all but which have been implemented
for some other purposes are listed.

• None
• Hard & Sticky Hard Sphere

– Hard Sphere
– Sticky Hard Sphere
– Sticky Hard Sphere 2
– Square Well Potential
– Square Well Potential 2

• Multi Lamellar Structures
– ThermalDisorder
– Paracrystalline
– ModifiedCaille

• anisotropic obj.
– P’(Q): local planar geometry

∗ P’(Q):ThinDisc
∗ P’(Q):ThinSphericalShell
∗ P’(Q):ThinEllipsoidalShell
∗ P’(Q):ThinHollowShell

– P’(Q): local cylindrical geometry
∗ P’(Q):TinRod
∗ P’(Q):SAW(withEXV)
∗ P’(Q):SAW(withoutEXV)

• fractal obj.
– Mass Fractal (Exp Cut-Off)
– Mass Fractal (Gaussian Cut-Off)
– Mass Fractal (Exp(-x̂ a) Cut-Off)
– Mass Fractal (OverlapSph Cut-Off)

• other
– Mass Fractal
– Cylinder (PRISM)
– VoigtPeak
– Correlation Hole
– Critical Scattering

195
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– Macro Ion (HP)
– Local Order
– RandomDistribution

4.1. Methods to include structure factors

For each scattering object i next to a size distribution Ni(x; l
¯i

) also a structure
factor Si(Q; s

¯i
) can be included. When a structure factor is included several theoretical

ways to account for it have been implemented like the monodisperse approximation
(4.1.1), decoupling approach (4.1.2), local monodisperse approximation (4.1.3), partial
structure factor (4.1.4) and scaling approximation of partial structure factors (4.1.5).
At the moment it is assumed that there are no interactions between different species
of scatterers so that the total scattering is given by the sum of the scattering of the
individual species

dσ

dΩ
(Q) =

N∑
i=1

dσi
dΩ

(Q) (4.1)

whereby different approaches to include structure factor effects in the differential scat-
tering cross-sections dσi

dΩ
(Q) of the species i of scatterer are defined below.

4.1.1. Monodisperse approach.

The monodisperse approach is the simplest way to include a structure factor in
the analysis. This approach simply multiplies the size averaged form factor with the
structure factor. Here it is assumed that the interaction potential between particles are
spherical symmetric and independent of the particle size.

dσi
dΩ

(Q) =

 ∞∫
0

Ni(x; l
¯i

)F 2
i (Q; a

¯i
, x)dx

Si(Q; s
¯i

) (4.2)

4.1.2. Decoupling approximation.

For systems with small polydispersities and small anisotropies leads to a decoupling
approach of Kotlarchyk and Chen [55]. It is assumed that interactions are independent
of particle size and orientation.

dσi
dΩ

(Q) =

∞∫
0

Ni(x; l
¯i

)F 2
i (Q; a

¯i
, x)dx+

1

ni

 ∞∫
0

Ni(x; l
¯i

)Fi(Q; a
¯i
, x)dx

2

× [Si(Q; s
¯i

)− 1] (4.3)

with

ni =

∞∫
0

Ni(x; l
¯i

)dx. (4.4)
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The decoupling approximation can only be combined with those form factor, for
which the scattering amplitude Fi(Q; a

¯i
, x) has been implemented. However, for many

form factors only the scattering intensity F 2
i (Q; a

¯i
, x) is available. The combination of

those form factors with the decoupling approach produces an error message in SASfit .

4.1.3. Local monodisperse approximation.

The opposite limit of the approximations as used for the decoupling approximation is
used in the local monodisperse approximation [77]. In this approach it is assumed that a
particle of a certain size is always surrounded by particles with the same size. Following
this the scattering is approximated by that of monodisperse sub-systems weighted by
the size distribution:

dσi
dΩ

(Q) =

∞∫
0

Ni(x; l
¯i

)F 2
i (Q; a

¯i
, x)Si(Q; s

¯i
, Ri(a

¯i
, x))dx (4.5)

in which it has been indicated that the structure factor is for particles of size Ri(a
¯i
, x).

As the distribution Ni(x; l
¯i

) does not necessarily describe the distribution of the overall
size. SASfit assumes, that the radius of a particle with the form factor Fi(Q; a

¯i
, x) used

in the structure factor is given by the radius of a sphere with the same volume Vi(a
¯i
, x)

Ri(a
¯i
, x) =

3

√
3

4π
Vi(a

¯i
, x). (4.6)

This local monodisperse approximation works better than the decoupling approximation
for systems with larger polydispersities and higher concentrations. As compared to the
decoupling approximation and the scaling approximation described below, it has the
advantage that the cross section is linear in the size distribution.

4.1.4. partial structure factors.

For polydisperse systems it is also not possible to write the scattering cross section
as a product of a form factor and a structure factor. The scattering cross section has
the form

dσi
dΩ

(Q) =

∞∫
0

Ni(x; l
¯i

)F 2
i (Q; a

¯i
, x)dx (4.7)

+
1

ni

∞∫
0

∞∫
0

Ni(x; l
¯i

)Ni(x
′; l

¯i
)Fi(Q; a

¯i
, x)Fi(Q; a

¯i
, x′)

× [Si(Q; s
¯i
, Ri(a

¯i
, x), Ri(a

¯i
, x′))− 1] dxdx′

where monodisperse structure factor Si(Q; s
¯i
, . . . ) is evaluated for the radius (Ri(a

¯i
, x)+

Ri(a
¯i
, x′))/2. ni and Ri(a

¯i
, x) have the same definition as those in eq. 4.4 and 4.6.
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4.1.5. Scaling approximation.

A scaling approximation has recently been introduced by Gazzillo et al. [33]. It is
assumed that the pair correlation functions are identical except for a scaling constant.
This leads to the following expression:

dσi
dΩ

(Q) =

∞∫
0

Ni(x; l
¯i

)F 2
i (Q; a

¯i
, x)dx (4.8)

+
1

ni

∞∫
0

∞∫
0

Ni(x; l
¯i

)Ni(x
′; l

¯i
)Fi(Q; a

¯i
, x)Fi(Q; a

¯i
, x′)

×V i(a
¯i
, x, x′)

Vi,av
[Si(Q; s

¯i
, Ri(a

¯i
, x), Ri(a

¯i
, x′))− 1] dxdx′

where Vi,av is given by

Vi,av =

∫∞
0
Ni(x; l

¯i
)Vi(a

¯i
, x)dx∫∞

0
Ni(x; l

¯i
)dx

(4.9)

and Vi(a
¯i
, x, x′) by

V i(a
¯i
, x, x′) =

4

3
π

(
1

2

(
3

√
3

4π
Vi(a

¯i
, x) +

3

√
3

4π
Vi(a

¯i
, x′)

))3

(4.10)

and the monodisperse structure factor is evaluated for the radius (Ri(a
¯i
, x)+Ri(a

¯i
, x′))/2.

ni and Ri(a
¯i
, x) have the same definition as those in eq. 4.4 and 4.6.

Note that the expression is not linear in the size distribution and that it involves
double integrations, which makes least-square fitting with this expression relatively slow.

4.1.6. van der Waals one-fluid approximation.
This approximation is similar to the scaling approximation introduced by Gazzillo et al.
[33]. The exact formular is given by

dσi
dΩ

(Q) =

∞∫
0

Ni(x; l
¯i

)F 2
i (Q; a

¯i
, x)dx (4.11)

+
1

ni

∞∫
0

∞∫
0

Ni(x; l
¯i

)Ni(x
′; l

¯i
)Fi(Q; a

¯i
, x)Fi(Q; a

¯i
, x′)

×V i(a
¯i
, x, x′)

Vi,x
[Si(Q; s

¯i
, Ri(a

¯i
, x), Ri(a

¯i
, x′))− 1] dxdx′

where Vi,x is given by

Vi,av =

∫∞
0
Ni(x; l

¯i
)Vi(a

¯i
, x)dx∫∞

0
Ni(x; l

¯i
)dx

(4.12)
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and Vi(a
¯i
, x, x′) by

V i(a
¯i
, x, x′) =

4

3
π

(
1

2

(
3

√
3

4π
Vi(a

¯i
, x) +

3

√
3

4π
Vi(a

¯i
, x′)

))3

(4.13)

and the monodisperse structure factor is evaluated for the radius (Ri(a
¯i
, x)+Ri(a

¯i
, x′))/2.

ni and Ri(a
¯i
, x) have the same definition as those in eq. 4.4 and 4.6.

Note that the expression is not linear in the size distribution and that it involves
double integrations, which makes least-square fitting with this expression relatively slow.

Figure 4.1. Effective structure factor Seff(q) for Spheres with Hard
Sphere interaction potential. The fraction is assumed to be η = 0.3.
A LogNormal distribution with σ = 0.15 and R0 = 50nm is assumed.
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4.2. Hard & Sticky Hard Sphere

4.2.1. Hard Sphere [78, 101].

U(r) =

{
∞ for 0 < r < σ

0 for r > σ
(4.14)

α =
(1 + 2fp)

2

(1− fp)4 (4.15a)

β = −6fp
(1 + fp/2)2

(1− fp)4 (4.15b)

γ =
fpα

2
(4.15c)

A = 2RHSq (4.15d)

G(q) =α
sinA− A cosA

A2
+ β

2A sinA+ (2− A2) cosA− 2

A3
+

γ
−A4 cosA+ 4 [(3A2 − 6) cosA+ (A3 − 6A) sinA+ 6]

A5
(4.15e)

SHS(q, RHS, fp) =
1

1 + 24fp
G(fp, RHSq)

RHSq

(4.15f)

Figure 4.2. Structure factor S(q) for a hard sphere interaction potential
for the different volume fractions fp.
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4.2.2. Sticky Hard Sphere.

In Baxter’s model [3, 85, 21, 2, 62, 63] of adhesive hard spheres the pair interaction
potential U(r) is replaces by

U(r)

kBT
=


∞ for 0 < r < σ

ln 12τ∆
σ+∆

for σ < r < σ + ∆

0 for r > σ + ∆

(4.16)

after which, when applied, the limit ∆→ 0 is taken. Thus, only a single parameter, the
so-called stickiness parameter τ , characterizes the adhesive strength.

κ = 2qRHS (4.17a)

η = fp

(
2RHS + ∆

2RHS

)3

(4.17b)

ε = τ +
η

1− η
(4.17c)

γ = fp
1 + η/2

3 (1− η)2 (4.17d)

λ =
6

η

(
ε−

√
ε2 − γ

)
(4.17e)

µ = λη(1− η) (4.17f)

β = −3η (2 + η)2 − 2µ (1 + 7η + η2) + µ2(2 + η)

2 (1− η)4 (4.17g)

α =
(1 + 2η − µ)2

(1− η)4 (4.17h)

C(q) =2
ηλ

κ
sinκ− 2

η2λ2

κ2
(1− cosκ)− (4.17i){

ακ3(sinκ− κ cosκ) + βκ2(2κ sinκ− (κ2 − 2) cosκ− 2)

+
ηα

2

(
(4κ3 − 24κ) sinκ− (κ4 − 12κ2 + 24) cosκ+ 24

)}
× 24

η

κ6

SsHS(q, RHS, fp, τ) =
1

1− C(q)
(4.17j)
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Figure 4.3. Structure factor S(q) for a sticky hard sphere interaction
potential for the different stickiness parameters τ .
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4.2.3. Sticky Hard Sphere (2nd version [83, 84]).

In Baxter’s model of adhesive hard spheres the pair interaction potential U(r) is
replaces by

U(r)

kBT
=


∞ for 0 < r < σ

ln 12τ∆
σ+∆

for σ < r < σ + ∆

0 for r > σ + ∆

(4.18)

σ = 2RHS + ∆ (4.19)

κ = qσ (4.20)

φ = fp

(
σ

2RHS

)3

(4.21)

λ± = 6

(
τ

φ
+

1

1− φ

)
±

√
36

[
τ

φ
+

1

1− φ

]2

− 12

φ

1 + φ
2

(1− φ)2 (4.22)

λ =

{
λ+ for λ+ < |λ−|
λ− otherwise

(4.23)

µ = λφ(1− φ) (4.24)

A =
1

2

1 + 2φ− µ
(1− φ)2 (4.25)

B =
σ

2

µ− 3φ

2 (1− φ)2 (4.26)

C = −Aσ2 −Bσ + λσ2/12 (4.27)

In(κ) =

1∫
0

xn cos(κx) dx (4.28)

Jn(κ) =

1∫
0

xn sin(κx) dx (4.29)

α = 1− 12fp
(
Cσ−2I0(κ) +Bσ−1I1(κ) + AI2(κ)

)
(4.30)

β = 12fp
(
Cσ−2J0(κ) +Bσ−1J1(κ) + AJ2(κ)

)
(4.31)

S(Q) =
1

α2 + β2
(4.32)
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Figure 4.4. Structure factor S(q) for a sticky hard sphere interaction
potential for the different stickiness parameters τ .
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4.2.4. Square Well Potential [89].

The Square well potential can be written as

U(r) =


∞ for 0 < r < σ

−ε for σ < r < λσ

0 for r > λσ

(4.33)

where λ and ε correspond to the breadth and the depth of the square well potential.
The structure factor S(Q) is than given by the following relations:

S(Q) =
1

1− C(Q)
(4.34a)

C(Q) =− 24η

(Qσ)6

{
α(Qσ)3 [sin(Qσ)−Qσ cos(Qσ)] (4.34b)

+ β(Qσ)2
[
2Qσ sin(Qσ)− (Q2σ2 − 2) cos(Qσ)− 2

]
+ γ

[
(4Q3σ3 − 24Qσ) sin(Qσ)− (Q4σ4 − 12Q2σ2 + 24) cos(Qσ) + 24

]
− ε

kBT
(Qσ)3 [sin(λQσ)− λQσ cos(λQσ) +Qσ cos(Qσ)− sin(Qσ)]

}
where α, β and γ are given by

α =
(1 + 2η)2 + η3(η − 4)

(1− η)4
(4.34c)

β = −1

3
η

18 + 20η − 12η2 + η4

(1− η)4
(4.34d)

γ =
1

2
η

(1 + 2η)2 + η3(η − 4)

(1− η)4
(4.34e)

NOTE:
Values for the depth of ε > 1.5kBT and for the volume fraction of η > 0.08 may give
unphysical results when compared to Monte Carlo simulations according to [89].
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Figure 4.5. Structure factor S(q) for a square well interaction potential.
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4.2.5. Square Well Potential 2.

The Square well potential can be written as

U(r) =


∞ for 0 < r < σ

−ε for σ < r < σ + ∆

0 for r > σ + ∆

(4.35)

where ∆ and ε correspond to the width and the depth of the square well potential. The
structure factor S(Q) is than given by the following relations:

S(Q) = 1− 4πρσ3 sin(Qσ)−Qσ cos(Qσ)

Q3σ3
+ 4πρσ2

[
e

ε
kBT − 1

] sin(Qσ)

Qσ
∆ (4.36)

where σ is the particle diameter (RHS = σ/2: hard sphere radius is requested by software
as input parameter), ∆ the width of the square well potential, ε (input value in software
is ε/kB, i.e. in Kelvin), T (in Kelvin) the sample temperature, the depth and ρ the
colloid concentration, which is related to the colloid volume fraction η by η = πρσ3/6.
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4.3. Multi Lamellar Structures [70, 31]

4.3.1. Multi-Lamellar Structures, Thermal Disorder.

Figure 4.6. Thermal disorder, considering fluctuations of flat layers
around well defined and evenly spaced equilibrium positions.

The first type describes thermal disorder (TD) caused by small fluctuations of the
bilayers around well defined mean layer positions of equal separation (Fig. 4.6). In such
a crystal lattice the long-range order is preserved and the structure factor for a single
domain of size L = Nd is identical to that of a perfect finite crystal multiplied by the
well known Debye-Waller temperature factor, where ∆ = 〈(dk − d)2〉 denotes the mean
square fluctuations of the bilayers. As shown in Fig. 4.6, STD(Q) is characterized by
a set of Bragg peaks of equal width, the diffraction order amplitudes of which decrease
exponentially with the Debye-Waller factor. The lost intensity is found as a diffuse
background scattering, which increases to the limit of N for large Q.

STD(Q,N, d,∆, Ndiff) = Ndiff +
N+2σ∑

Nk=N−2σ

xkSk,TD (4.37)

with

Sk,TD =

(
Nk + 2 exp

(
−Q

2∆2

2

)Nk−1∑
m=1

(Nk −m) cos(mQd)

)
(4.38)

Ndiff accounts for an additional diffuse background, due to a number of uncorrelated
scattering bilayers in STD(Q,N, d,∆, Ndiff), which is not included in the TD theory. Its
origin is attributed to bilayers with strong lattice defects or unilamellar vesicles, which
display neither short-range nor (quasi-) long-range order.

The structure factors Sk,TD(Q) with low, but fixed stacking numbers N show os-
cillations at low Q (as can be seen in Fig. 4.6), but no such oscillations are found in
experimental data. This can be understood as the consequence of polydispersity in the
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size of the different stacks. In order to eliminate these artifacts from strictly monodis-
perse systems, we use a ‘polydisperse’ structure factor, i.e. we use an average of a series
of structure factors with varying numbers of bilayers [31]. The analytical form of the
distribution is not known a priori. We use a Gaussian distribution approximated by a
discrete series The standard deviation σ for the Gaussian-weighted distribution is chosen
as

σ =

{√
N forN ≥ 5,

0.5(N − 1) forN < 5
(4.39)

Therefore, N must be greater or equal to 2, which is a reasonable restriction for multil-
amellar stacks of bilayers. In the range of N ± 2σ, structure factors weighted by

xk =
1

σ
√

2π
exp

[
−(Nk −N)2

2σ2

]
(4.40)

are calculated, where N is the mean number of stacks and Nk is one of the bilayers in
the range N ± 2σ. This polydispersity model does not introduce new free parameters
and is symmetrical around the mean N .

Figure 4.7. Structure factor of multi-lamellar structures with thermal disorder.

Input Parameters for model ThermalDisorder:

N: mean number of stacks N
d: stacking separation d
Delta: Debye-Waller disorder parameter ∆
Nu: number of uncorrelated scattering bilayers Ndiff

Note:

• This structure factor is intended to be used with the monodisperse

approximation.
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4.3.2. Multi-Lamellar Structures, Paracrystalline Theory.

Figure 4.8. Stacking disorder as described within paracrystalline theory
(PT) is due to displacements from the mean layer positions.

The second type of disorder accounts for the presence of small variations in the
bilayer separations (Fig. 4.8), so-called stacking disorder, and is described within the
paracrystalline theory (PT) [48, 36, 11]. As the position of an individual fluctuating
layer in a paracrystal is determined solely by its nearestneighbour membranes, the crys-
talline long-range order is lost. Still, we are able to observe Bragg-peak scattering due
to the fact that there is quasi long-range order. However, these quasi-Bragg peaks will
display a typical line shape. In the case of disorder of the second kind, the structure
factor derived from paracrystalline theory is given by [36]

SPT(Q,N, d,∆, Ndiff+) = Ndiff +
N+2σ∑

Nk=N−2σ

xkSk,PT (4.41)

with

Sk,PT =

(
Nk + 2

Nk−1∑
m=1

(Nk −m) cos(mQd) exp

(
−m

2Q2∆2

2

))
(4.42)

Ndiff accounts for an additional diffuse background, due to a number of uncorrelated
scattering bilayers in SPT(Q,N, d,∆, Ndiff), which is not included in the paracrystalline
theory. Its origin is attributed to bilayers with strong lattice defects or unilamellar
vesicles, which display neither short-range nor (quasi-) long-range order.

Fig. 4.8 shows that the quasi-Bragg peak intensity decreases for SPT(Q), as in
the previous case of thermal disorder. However, the decrease in peak height is also
accompanied by a progressive broadening proportional to the square of the diffraction
order h [88]. The line shape of the tails is essentially Lorentzian with

Sk,PT(Q) ∝ (Q−Qh)
2,
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where Qh is the position of the hth diffraction order in Q space. Again, the loss in
intensity shows up as diffuse background scattering, which is stronger than from pure
thermal disorder.

The structure factors Sk,PT(Q) with low, but fixed stacking numbers N show os-
cillations at low Q (as can be seen in Fig. 4.8), but no such oscillations are found in
experimental data. This can be understood as the consequence of polydispersity in the
size of the different stacks. In order to eliminate these artifacts from strictly monodis-
perse systems, we use a ‘polydisperse’ structure factor, i.e. we use an average of a series
of structure factors with varying numbers of bilayers [31]. The analytical form of the
distribution is not known a priori. We use a Gaussian distribution approximated by a
discrete series The standard deviation σ for the Gaussian-weighted distribution is chosen
as

σ =

{√
N forN ≥ 5,

0.5(N − 1) forN < 5
(4.43)

Therefore, N must be greater or equal to 2, which is a reasonable restriction for multil-
amellar stacks of bilayers. In the range of N ± 2σ, structure factors weighted by

xk =
1

σ
√

2π
exp

[
−(Nk −N)2

2σ2

]
(4.44)

are calculated, where N is the mean number of stacks and Nk is one of the bilayers in
the range N ± 2σ. This polydispersity model does not introduce new free parameters
and is symmetrical around the mean N .

Figure 4.9. Structure factor of multi-lamellar structures with para-
crystalline disorder.

Input Parameters for model Paracrystalline:
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N: mean number of stacks N
d: stacking separation d
Delta: stacking disorder parameter ∆
Nu: number of uncorrelated scattering bilayers Ndiff

Note:

• This structure factor is intended to be used with the monodisperse

approximation.
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4.3.3. Multi-Lamellar Structures, Modified Caillé Theory.

Figure 4.10. Bending fluctuation disorder is a particular feature of the
Lα (smectic A) phase and is caused by bilayer undulations. The particular
shape of the Bragg peaks is given by the modified Caillé theory (MCT).

There is another type of disorder when bilayer bending fluctuations are considered
(Fig. 4.10). Such fluctuations are particularly pronounced in the fluid Lα phase (equiv-
alent to smectic A). Caillé Bending fluctuation disorder is a particular feature of the Lα
(smectic A) phase and is caused by bilayer undulations. The particular shape of the
Bragg peaks is given by the modified Caillé theory (MCT). [16] realized the impact on
the structure factor, which in a modified version [108] of the Caillé theory (MCT) is

SMC(Q,N, d, η1, γ,Ndiff) = Ndiff +
N+2σ∑

Nk=N−2σ

xkSk,MC (4.45)

with

Sk,MC = Nk + 2

Nk−1∑
m=1

(Nk −m) cos(mQd) e−( d
2π )

2
Q2η1γ (πm)−(d/2π)2Q2η1 (4.46)

Here, γ is Euler’s constant and

η = πkBT/2d
2(BKc)

1/2

is the Caillé parameter, which is a measure for the bilayer fluctuations and is inversely
proportional to the square root of the bilayer bending rigidity Kc times the bulk modulus
of compression B (De Gennes & Prost, 1993). Therefore, a lineshape analysis of the
quasi-Bragg peaks opens an important experimental window on interbilayer interactions.
Further, Kc and B can be decoupled as demonstrated recently by hydration studies
[79, 70], or more elegantly by measuring multibilayers aligned on a solid substrate [61].
Ndiff accounts for an additional diffuse background, due to a number of uncorrelated
scattering bilayers in SMC(Q,N, d, η1, γ,Ndiff), which is not included in the MCT. Its
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origin is attributed to bilayers with strong lattice defects or unilamellar vesicles, which
display neither short-range nor (quasi-) long-range order.

Fig. 4.10 shows a typical example of Sk,MCT(Q), which is similar to SPT(Q) with
respect to the progressive decrease in peak height and increase in peak width, but which
differs significantly in line shape as

Sk,MCT ∝ (Q−Qh)
−1+ηh2

for randomly oriented scattering domains [86, 108].
The structure factors Sk,MCT(Q) with low, but fixed stacking numbers N show os-

cillations at low Q (as can be seen in Fig. 4.10), but no such oscillations are found in
experimental data. This can be understood as the consequence of polydispersity in the
size of the different stacks. In order to eliminate these artifacts from strictly monodis-
perse systems, we use a ‘polydisperse’ structure factor, i.e. we use an average of a series
of structure factors with varying numbers of bilayers [31]. The analytical form of the
distribution is not known a priori. We use a Gaussian distribution approximated by a
discrete series The standard deviation σ for the Gaussian-weighted distribution is chosen
as

σ =

{√
N forN ≥ 5,

0.5(N − 1) forN < 5
(4.47)

Therefore, N must be greater or equal to 2, which is a reasonable restriction for multil-
amellar stacks of bilayers. In the range of N ± 2σ, structure factors weighted by

xk =
1

σ
√

2π
exp

[
−(Nk −N)2

2σ2

]
(4.48)

are calculated, where N is the mean number of stacks and Nk is one of the bilayers in
the range N ± 2σ. This polydispersity model does not introduce new free parameters
and is symmetrical around the mean N .

Input Parameters for model ModifiedCaile:

N: mean number of stacks N
d: stacking separation d
eta: the Caillé parameter η is a measure for the bilayer fluctuations and inversely

proportional to the square root of the bilayer bending rigidity
Nu: number of uncorrelated scattering bilayers Ndiff

Note:

• This structure factor is intended to be used with the monodisperse

approximation.
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Figure 4.11. Structure factor of multi-lamellar structures according to
the modified Caillé theory.
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4.4. Mass Fractal

For a fractal object, the structure factor S(q) can be calculated [92, 91] via the pair
correlation function g(r), which describes the total number of particles within a sphere
of radius r centered in a central particle and is given (for dim = 3) by

N(r) = Φ

r∫
0

g(r) 4πr2 dr (4.49)

or

dN(r) = Φg(r) 4πr2 dr (4.50)

On the other hand, a fractal object is characterized by a spatial distribution of the
individual scatterers given by

N(r) =

(
r

r0

)D
(4.51)

where r0 is the gauge of the measurement, which has the magnitude of the characteristic
dimension of each individual scatterer. Differentiation of 4.51 and identification with
4.50 gives

Φg(r) =
D

4πrD0
rD−3 (4.52)

Because D is smaller than 3, g(r) goes to zero at large r. This is clearly unphysical. At
some large scale, the sample will show a macroscopic density. A good knowledge of the
sample allows in general a reasonable assumption for the large-scale behavior of g(r).
Therefore a cut-off function h(r, ξ) has to be introduced, where ξ is a cut-off distance,
to describe the behavior of the pair correlation function at large distances. To derive
the analytical form of S(q) within this assumption, one can use the general theory of
liquids, where the uniform density is subtracted to avoid a divergence in the evaluation
of S(q). We then write

4πΦ[g(r)− 1] =
D

rD0
rD−3h(r, ξ) (4.53)

The meaning of ξ is only qualitative and has to be made precise in any particular
situation. Generally speaking, it represents the characteristic distance above which the
mass distribution in the sample is no longer described by the fractal law. In practice, it
can represent the size of an aggregate or a correlation length in a disordered material.
For isotropic systems

S(q) = 1 + 4πΦ

∞∫
0

[g(r)− 1]
sin(qr)

qr
r2 dr (4.54)

Combined with 4.53 one gets

S(q) = 1 +
D

rD0

∞∫
0

rD−3h(r, ξ)
sin(qr)

qr
r2 dr (4.55)
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Several cut-off functions h(r, ξ) have been discussed in the literature and compared by
Sorensen et al. [92, 91].

hExp(r, ξ) = exp
[
− r
ξ

]
(4.56)

hGauss(r, ξ) = exp

[
−
(
r
ξ

)2
]

(4.57)

hExp(-x̂ a)(r, ξ, α,D) = exp
[
−
(
r
ξ

)α]
(4.58)

hOverlapSph(r, ξ) =


(

1 + r
4ξ

)(
1− r

2ξ

)2

for r ≤ 2ξ

0 for r > 2ξ
(4.59)

For the cut-off functions 4.56 and 4.57 the integral 4.55 can be solved analytically and
the corresponding structure factors are given by

SExp(q, ξ,D, r0) = 1 +
DΓ(D − 1) sin ([D − 1] arctan(qξ))

(qr0)D
[
1 + 1

q2ξ2

](D−1)/2
(4.60)

SGauss(q, ξ,D, r0) = 1 + Γ
[
D
2

] D
2

(
ξ

r0

)D
1F1

[
D
2
, 3

2
,− q2ξ2

8

]
(4.61)

where D is the fractal dimension, ξ is a cut-off length for the fractal correlations, Γ(x) is
the gamma function. 1F1 [] is the Kummer or hypergeometric function. For the cut-off
functions 4.58 and 4.59 the integral 4.55 is solved numerically.

Figure 4.12. Comparison of the different structure factors for mass fractals.
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4.4.1. Mass Fractal (Exp Cut-Off).

Input Parameters for model Mass Fractal (Exp Cut-Off):

r0: characteristic dimension of individual scattering objects r0

xi: cut-off length for the fractal correlations ξ
D: fractal dimension D

Note:

• D needs to be larger than 1 (D > 1). Physical values for D are between 1 and
3 (1 < D < 3).
• The fractal dimension needs to be large than the size of the individual scattering

objects (r0 < ξ).

Figure 4.13. Structure factor of a mass fractal with an exponential cut-

off function hExp(r, ξ) = exp
[
−
(
r
ξ

)α]
.
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4.4.2. Mass Fractal (Exp(-xˆa) Cut-Off).

Input Parameters for model Mass Fractal (Exp(-x^a) Cut-Off):

r0: characteristic dimension of individual scattering objects r0

xi: cut-off length for the fractal correlations ξ
D: fractal dimension D

Note:

• D needs to be larger than 1 (D > 1). Physical values for D are between 1 and
3 (1 < D < 3).
• The fractal dimension needs to be large than the size of the individual scattering

objects (r0 < ξ).
• the exponents α should be larger than 1, as otherwise the integral 4.55 for S(q)

does not converges.

Figure 4.14. Structure factor of a mass fractal with a cut-off function

hExp(-x̂ a)(r, ξ, α) = exp
[
−
(
r
ξ

)α]
.
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4.4.3. Mass Fractal (Gaussian Cut-Off).

Input Parameters for model Mass Fractal (Gaussian Cut-Off):

r0: characteristic dimension of individual scattering objects r0

xi: cut-off length for the fractal correlations ξ
D: fractal dimension D

Note:

• D needs to be larger than 1 (D > 1). Physical values for D are between 1 and
3 (1 < D < 3).
• The fractal dimension needs to be large than the size of the individual scattering

objects (r0 < ξ).

Figure 4.15. Structure factor of a mass fractal with an Gaussian cut-off

function hGauss(r, ξ) = exp

[
−
(
r
ξ

)2
]
.
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4.4.4. Mass Fractal (OverlapSph Cut-Off).

Input Parameters for model Mass Fractal (OverlapSph Cut-Off):

r0: characteristic dimension of individual scattering objects r0

xi: cut-off length for the fractal correlations ξ
D: fractal dimension D

Note:

• D needs to be between 1 and 3 (1 < D < 3).
• The fractal dimension needs to be large than the size of the individual scattering

objects (r0 < ξ).

Figure 4.16. Structure factor of a mass fractal with a cut-off function

hOverlapSph(r, ξ) =
(

1 + r
4ξ

)(
1− r

2ξ

)2

for r ≤ 2ξ.
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4.5. Other Structure Factors

4.5.1. Hayter-Penfold RMSA [43, 41]. This is the structure factor for a system
of charged, spheroidal objects in a dielectric medium. When combined with an appro-
priate form factor (such as sphere, core+shell, ellipsoid etc.), this allows for inclusion of
the interparticle interference effects due to screened coulomb repulsion between charged
particles. The salt concentration, is used to compute the ionic strength of the solution
which in turn is used to compute the Debye screening length. At present there is no
provision for entering the ionic strength directly nor for use of any multivalent salts.
The counterions are also assumed to be monovalent.

Input Parameters for model Hayter Penfold RMSA:

RHS: hard sphere radius RHS of particles in [nm].
Z: charge of particle in units of the charge of an electron e =?1.60217653× 10?19C
eta: volume fraction η of particles
T: sample temperature T in Kelvin
salt: monovalent salt concentration in [M]
eps r: dielectric constant εr of solvent



4.5. OTHER STRUCTURE FACTORS 223

4.5.2. MacroIon.

ETA = volume fraction (4.62a)

AK = κσ = inv. screening length times diameter (4.62b)

κ =
√
e2/(εε0kBT ) ∗ (ρc + 2ρs) (4.62c)

ρc = density of counterions = ρcolloidsZ (4.62d)

ρs = density of salt cations or anions (4.62e)

GEK = charge2/(πkBTεε0σ(2 + AK)2) (4.62f)

charge = Ladung eines Kolloids = eZ (4.62g)

S = ETA1./3 = scaling factor for rescaled MSA (RMSA) (4.62h)

GAMK = 2 ∗ S ∗GEK ∗ exp(AK − AK/S). (4.62i)
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4.5.3. Critical Scattering.

Scrit(Q) = 1 +
κ

1 + ζ2Q2
(4.63)

ζ: correlation length, κ: scaling factor

4.5.4. Correlation Hole.

Scorr. hole(Q, h, η) = 1 + ηΦ(Qh) (4.64)

Φ(x) = 3 sin(x)−x cos(x)
x3 η: volume fraction, h: hole radius

4.5.5. Random Distribution Model.

SRDM(Q) =
1

1 + 8Vca/Vp
ε

Φ(x)
(4.65)

x = 2QRca

Vca = 4
3
πR3

ca

Vp = 4
3
πR3/fp

Φ(x) = 3 sin(x)−x cos(x)
x3

4.5.6. Local Order Model.

SLOM(Q) = 1 + 4
sin(QD)

QD
− zΦ(x); (4.66)

x = αQD

Φ(x) = 3 sin(x)−x cos(x)
x3

4.5.7. Cylinder(PRISM).

SCyl,PRISM =
1

1 + νCqP15

(4.67)

x = 2QR

xP15 = Q(L− 2R)

P15 = 2
Si(xP15)

xP15

− 4
sin2(xP15/2)

x2
P15

Cq = 3
sin(x)− x cos(x)

x3
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4.5.8. Voigt Peak.

In spectroscopy, the Voigt profile is a spectral line profile named after Woldemar
Voigt and found in all branches of spectroscopy in which a spectral line is broadened by
two types of mechanisms, one of which alone would produce a Doppler profile, and the
other of which would produce a Lorentzian profile. All normalized line profiles can be
considered to be probability distributions. The Doppler profile is essentially a normal
distribution and a Lorentzian profile is essentially a Cauchy distribution. Without loss
of generality, we can consider only centered profiles which peak at zero. The Voigt profile
is then the convolution of a Lorentzian profile and a Doppler profile:

V (x|σ, γ) =

∞∫
∞

D(x′|σ)L(x− x′|γ) dx′ (4.68a)

where x is frequency from line center, D(x|σ) is the centered Doppler profile:

D(x|σ) =
e−x

2/2σ2

σ
√

2π
(4.68b)

and L(x|γ) is the centered Lorentzian profile:

L(x|γ) =
γ

π(x2 + γ2)
. (4.68c)

The defining integral can be evaluated as:

V (x) =
<[w(z)]

σ
√

2π
(4.68d)

where <[w(z)] is the real part of the complex error function of z and

z =
x+ iγ

σ
√

2
(4.68e)

SVoigt(Q,Qm, A, σ, γ, c0) = A V (Q−Qm|σ, γ) + c0 (4.68f)





CHAPTER 5

Size Distributions

5.1. Delta

Choosing Delta as a size distribution simply scales the form factor with a constant
value N

Input Parameters for size distribution Delta:

N: particle number density N

227
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5.2. Uniform distribution

Figure 5.1. Uniform distribution function. xmin, xmax ∈ (−∞,∞),
xmax > xmin, xmin ≤ x ≤ xmax

The uniform distribution defines equal probability over a given range for a continuous
distribution. The support is defined by the two parameters, xmin and xmax, which are
its minimum and maximum values.

Uniform(x|N, xmin, xmax) =


N

xmax − xmin

for xmin ≤ x ≤ xmax,

0 for x < xmin or x > xmax

(5.1a)

Input Parameters for size distribution Uniform:

N: particle number density N
Xmin: minimum value of the distribution (xmin)
Xmax: maximum value of the distribution (xmax)
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5.3. Triangular distribution

Figure 5.2. Triangular distribution function. xmin, xmode, xmax ∈
(−∞,∞), xmax > xmin, xmin ≤ xmode ≤ xmax, xmin ≤ x ≤ xmax

Triangular(x|xmin, xmax, xmode) =
2(x− xmin)

(xmax − xmin)(xmode − xmin)
for xmin < x ≤ xmode

2(xmax − x)

(xmax − xmin)(xmax − xmode)
for xmode < x ≤ xmax

(5.2a)
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5.4. Log-Normal distribution

Figure 5.3. LogNormal distribution function (R0 = 1 and p = 1 has
been been set both to one here). Valid parameter ranges: R ∈ (0,∞),
R0 ∈ (0,∞), σ ≥ 0, p ∈ (−∞,∞)

The LogNorm distribution is a continuous distribution in which the logarithm of a
variable has a normal distribution.

LogNorm(X,µ, σ, p) =
N

cLN

1

Xp
exp

(
− ln(X/µ)2

2σ2

)
(5.3a)

cLN =
√

2π σ µ1−p exp

(
(1− p)2σ

2

2

)
(5.3b)

where σ is the width parameter, p a shape parameter, µ is the location parameter. cLN

is choosen so that
∫∞

0
LogNorm(X,µ, σ, p) dX = N The mode of the distribution Xmode

and the variance Var(X) are defined as

Xmode = µe−pσ
2

(5.4)

Var(X) = µ2
(
eσ

2 − 1
)
e(3−2p)σ2

(5.5)

and the mth moment 〈Xm〉 of the LogNorm distribution as

〈Xm〉 =

∫
Xm LogNorm(X) dX∫

LogNorm(X) dX
= µm e

1
2
σ2m(2−2p+m). (5.6)



5.5. SCHULZ-ZIMM (FLORY) DISTRIBUTION 231

5.5. Schulz-Zimm (Flory) distribution

Figure 5.4. The SZ(X,N,Xa, k) distribution function. Valid parameter
ranges: X ∈ [0,∞), Xa ∈ (0,∞), k = X2

a/σ
2 > 0

A function commonly used to present polymer molecular weight distributions is the
Schulz-Zimm function

SZn(X,N,Xa, k) =
N

Xa

(
X

Xa

)k−1
kk exp(−kX/Xa)

Γ(k)
(5.7)

SZn(X,N,Xa, k) is normalized so that
∫∞

0
SZn(X,N,Xa, k) dX = N . In polymer science

X would be the molecular weight M , Mn = Xa, and Mw = Mn
k+1
k

, and Γ(k) is the
gamma function. The above form (5.7) gives the number distribution. Its mode, mean,
variance and mth-moment are given by

Xmode = Xa

(
1− 1

k

)
(5.8a)

Xmean = Xa (5.8b)

Var (X) = σ2 =
X2
a

k
(5.8c)

〈Xm〉 =

(
Xa

k

)m
Γ (k +m)

Γ(k)
(5.8d)
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The corresponding weight distribution is

SZw(X,N,Xa, k) =
X

Xa

SZn(X,N,Xa, k) =
NXk

(
k
Xa

)k+1

e−
kX
Xa

Γ(k + 1)
(5.9)

Also SZw(X,N,Xa, k) is normalized so that
∫∞

0
SZw(X,N,Xa, k) dX = N . The mode,

mean, variance and mth-moment of the weight distribution are given by

Xmode = Xa (5.10a)

Xmean = Xa
1 + k

k
(5.10b)

Var (X) = σ2 = X2
a

1 + k

k2
(5.10c)

〈Xm〉 =

(
Xa

k

)m
Γ (k +m+ 1)

Γ (k + 1)
(5.10d)
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5.6. Gamma distribution

The Gamma distribution is a two parameter continuous distribution with a scale
parameter θ and a shape parameter k.

gammaSD(x,N, xmode, σ) =
N

θ

(x
θ

)k−1 exp(−x/θ)
Γ(k)

(5.11)

The mean xmean, mode xmode and variane σ2 of the distribution are given by

xmean = kθ (5.12)

xmode = (k − 1)θ for k ≥ 1 (5.13)

σ2 = kθ2 (5.14)

The gamma distribution is more flexible than the exponential or ξ2 distribution function
which are special cases of the gamma distribution function. When k is large, the gamma
distribution closely approximates a normal distribution with the advantage that the
gamma distribution has density only for positive real numbers. For small values of k the
distribution becomes a right tailed distribution.

The mth moment 〈Xm〉 of the size distribution is given by

〈Xm〉 = θm
Γ(k +m)

Γ(k)
. (5.15)

In the present version the Gamma distribution is parametrised as a function of the mode
and variance, i.e. with

k =
xmode

√
x2

mode + 4σ2 + x2
mode + 2σ2

2σ2
(5.16)

and

θ =
1

2

(√
x2

mode + 4σ2 − xmode

)
(5.17)

gammaSD(R,N,Rm, σ) is normalized so that
∫∞

0
gammaSD(R,N,Rm, σ) dR = N .

Input Parameters for model Sphere:

N: N
mode: mod of the distribution (maximum, most probable size) xmode > 0
sigma: width parameter σ > 0. The variance of the distribution is σ2.

Note:

• The parameters mode and sigma needs to be positive.
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Figure 5.5. The gammaSD(R,N, xmode, σ) distribution function. Valid
parameter ranges: x ∈ [0,∞), xmode ∈ (0,∞), σ > 0
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5.7. PearsonIII distribution

The Pearson distribution is a family of probability distributions that are a general-
isation of the normal distribution. The Pearson Type III distribution is given by the
probability density function

f(x) =
1

β Γ(p)

(
x− α
β

)p−1

e−(x−α)/β, (5.18)

where x ∈ [α,∞) and α, β and p are parameters of the distribution with β > 0 and
p > 0 (Abramowitz and Stegun 1954, p. 930). Here, Γ() denotes the Gamma function.

• Mean:
α + pβ

• Variance:
pβ2

• Skewness:
2
√
p

• Kurtosis:
6

p
The Pearson Type III distribution is identical to the Gamma distribution (5.11). When
α = 0, β = 2, and p is half-integer, the Pearson Type III distribution becomes the χ2

distribution of 2p degrees of freedom.
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5.8. Gauss distribution

Figure 5.6. Normal or Gauss distribution function (R0 = µ = 0 has been
chosen in the plot). Valid parameter ranges: R ∈ (0,∞), R0 ∈ (−∞,∞),
σ > 0

Gauss(R,N, σ,R0) =
N

cGauss

e−
(R−R0)2

2σ2 (5.19a)

cGauss =

√
π

2
σ

(
1 + erf

(
R0√
2 σ

))
(5.19b)

cGauss is choosen so that
∫∞

0
Gauss(R, σ,R0) dR = N
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5.9. Generalized exponential distribution (GEX)

GEX(R, β, λ, γ)) = N
β

γ

(
x

γ

)λ+1
e−(x/γ)β

Γ
(
λ+2
β

) (5.20a)
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5.10. Generalized extreme value distribution (GEV)

Figure 5.7. The shape parameter governs the tail behaviour of the dis-
tribution, the sub-families defined by ξ → 0, ξ > 0 and ξ < 0 correspond,
respectively, to the Gumbel, Fréchet and Weibull families, whose cumula-
tive distribution functions are reminded below. Gumbel or type I extreme
value distribution

GEV(R, µ, σ, ξ) =
N

c1

e−(1+
ξ (R−µ)

σ )
−1/ξ

σ
(

1 + ξ (R−µ)
σ

)1+1/ξ
(5.21)

with

c1 =

{
1 for ξ > 0

1− exp
(
−
(
1− ξµ

σ

)− 1
ξ

)
for ξ < 0

(5.22)

The shape parameter ξ governs the tail behaviour of the distribution, the sub-families
defined by ξ → 0, ξ > 0 and ξ < 0 correspond, respectively, to the Gumbel, Fréchet and
Weibull families, whose cumulative distribution functions are reminded below.

• Gumbel or type I extreme value distribution

F (x;µ, σ) = e−e
−(x−µ)/σ

for x ∈ R

• Fréchet or type II extreme value distribution

F (x;µ, σ, α) =

{
0 x ≤ µ

e−((x−µ)/σ)−α x > µ

• Weibull or type III extreme value distribution

F (x;µ, σ, α) =

{
e−(−(x−µ)/σ)−α x < µ

1 x ≥ µ

where ξ > 0 and ξ > 0
Remark I: For reliability issues the Weibull dist ribution is used with the

variable t = µ − x, the time, which is strictly positive. Thus the support is
positive - in contrast to the use in extreme value theory.

Remark II: Be aware of an important distinctive feature of the three extreme
value distributions: The support is either unlimited, or it has an upper or lower
limit.

• Parameters
µ ∈ [−∞,∞] location (real)
σ ∈ (0,∞] scale (real)
ξ ∈ [−∞,∞] shape (real)
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• Support
x > µ− σ/ξ (ξ > 0)
x < µ− σ/ξ (ξ < 0)
x ∈ [−∞,∞] (ξ = 0)

[1] http://en.wikipedia.org/wiki/Generalized_extreme_value_distribution



240 5. SIZE DISTRIBUTIONS

5.11. Maxwell distribution

Figure 5.8. Maxwell distribution function. Valid parameter ranges: R ∈
[0,∞), R0 ∈ (−∞,∞), σ > 0

Maxwell(R,R0, σ) =


if R ≥ R0: N c

cmw
(R−R0)2 e−(R−R0)2/(2σ2)

else: 0

(5.23a)

c =
4√
π

(
2σ2
)−3/2

(5.23b)

cmw =


if R0 < 0: 1− 1

σ

√
2
π

R0√
exp(R2

0/σ
2)

+ erf
(

R0√
2 σ

)
else: 1

(5.23c)
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5.12. Weibull distribution

Figure 5.9. Weibull distribution function (µ = 0, α = 1 has been chosen
in the plot). Valid parameter ranges: R ∈ [0,∞), µ ∈ [0,∞), α > 0, λ > 0

Weibull(R,α, λ, µ) =
Nλ

α

(
R− µ
α

)λ−1

e−(R−µα )
λ

e−( µα)
λ

(5.24)

where λ is the shape parameter, µ is the location parameter and α is the scale parameter.
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5.13. fractal size distribution

Figure 5.10. fractal size distribution function. Valid parameter ranges:
R ∈ [Rmin, Rmax], fD ∈ (−1,∞), Rmax > Rmin > 0

fractalSD(R,N,Rmin, Rmax, fD) =
NfD

R−fDmin −R
−fD
max

R−(1+fD) (5.25)
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Peak functions
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6.1. Beta

The Beta distribution is a very versatile function which can be used to model
several different shapes of probability density curves. In probability theory and statistics,
the beta distribution is a family of continuous probability distributions defined on the
interval [0, 1] parameterized by two positive shape parameters, typically denoted by α
and β.

pBeta(x;α, β) =

{
1

B(α,β)
xα−1(1− x)β−1 for 0 < x < 1

0 otherwise
(6.1)

The beta function, B, appears as a normalization constant to ensure that the total
probability integrates to unity. α and β are positive numbers that define the shape
parameters. The mode of the beta distribution for shape parameters α > 1 and β > 1
is given by

mode (pBeta) =
α− 1

α + β − 2
(6.2)

6.1.1. Beta (Amplitude).

yBeta(ampl) (x;A, xmin, xmax, α, β, c0) = A
pBeta

(
x−xmin

xmax−xmin
;α, β

)
pBeta

(
α−1

α+β−2
;α, β

) + c0 (6.3)

Required parameters:

ampl.: amplitude A of the Beta peak
xmin: continuous lower boundary parameters xmin

xmax: continuous upper boundary parameters xmax

alpha: first shape parameter α > 1
beta: second shape parameter β > 1
backgr: offset c0

Note

• Both shape parameter needs to be larger than one (α, β > 1), as only than the
distribution has a peak shape.
• where the Beta distribution is not defined the offset value is returned:
∀x /∈ (xmin, xmax) yBeta(ampl)(x) = c0

• Default (size) distribution: Monodisperse

6.1.2. Beta (Area).

yBeta(area) (x;A, xmin, xmax, α, β, c0) = A
pBeta

(
x−xmin

xmax−xmin
;α, β

)
xmax − xmin

+ c0 (6.4)

Required parameters:

area: area A of the beta distribution
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Figure 6.1. Plot of Beta (Amplitude) distribution.

xmin: continuous lower boundary parameters xmin

xmax: continuous upper boundary parameters xmax

alpha: first shape parameter α > 0
beta: second shape parameter β > 0
backgr: offset c0

Note

• Both shape parameter needs to be larger than zero (α, β > 0)
• where the Beta distribution is not defined the offset value is returned:
∀x /∈ (xmin, xmax) yBeta(area)(x) = c0

• Default (size) distribution: Monodisperse
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6.2. Chi-Squared

1In probability theory and statistics, the chi-square distribution (also chi-squared or
ξ2 distribution) is one of the most widely used theoretical probability distributions in
inferential statistics, e.g., in statistical significance tests. It is useful because, under
reasonable assumptions, easily calculated quantities can be proven to have distributions
that approximate to the chi-square distribution if the null hypothesis is true.

The best-known situations in which the chi-square distribution are used are the
common chi-square tests for goodness of fit of an observed distribution to a theoretical
one, and of the independence of two criteria of classification of qualitative data. Many
other statistical tests also lead to a use of this distribution, like Friedman’s analysis of
variance by ranks.

A probability density function of the chi-square distribution is

f(x; k) =


1

2k/2Γ(k/2)
x(k/2)−1e−x/2 for x > 0

0 for x ≤ 0
(6.5)

where Γ denotes the Gamma function, which has closed-form values at the half-integers.
The mode of the distribution is

mode = k − 2 if k ≥ 2. (6.6)

The χ2 distribution is a special case of the gamma distribution 6.8 where θ = 2 in the
equation 6.31.

6.2.1. Chi-Squared (Amplitude).

χ2(x;A, xc, σ, k, c0) =

{
c0 + A0 (z + u)v exp

(
− z+u

2

)
for z + u ≥ 0

c0 otherwise
(6.7)

with

z =
x− xx
σ

(6.8)

u = k − 2 (6.9)

v =
k

2
− 1 (6.10)

A0 =
A exp(v)

uv
(6.11)

The standard statistical form has been reparameterized. The parameter xc has been
added to enable variable x positioning, and σ to enable scaling. The mode is xc. The
function returns 0 for those x where it is undefined (z + u < 0).

Required parameters:

amplitude: amplitude a of the Gamma peak
center: location parameter (mode) xc

1Description taken partly from Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Chi-square_distribution
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width: scaling parameter σ > 0
shape: shape parameter k > 2
backgr: offset c0

Note

• The width parameter needs to be larger than zero (σ > 0).
• The shape parameter needs to be larger than two (k > 2)
• Default (size) distribution: Monodisperse

Figure 6.2. Plot of Chi-Squared (Amplitude) distribution.

6.2.2. Chi-Squared (Area).

χ2(x;A, xc, σ, k, c0) =

{
c0 + A0 (z + u)v exp

(
− z+u

2

)
for z + u ≥ 0

c0 otherwise
(6.12)

with

z =
x− xx
σ

(6.13)

u = k − 2 (6.14)

v =
k

2
− 1 (6.15)

A0 =
A

2
k
2σΓ

(
k
2

) (6.16)
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The standard statistical form has been reparameterized. The parameter xc has been
added to enable variable x positioning, and σ to enable scaling. The mode is xc. The
function returns 0 for those x where it is undefined (z + u < 0).

Required parameters:

area: area a of the Gamma peak
center: location parameter (mode) xc
width: scaling parameter σ > 0
shape: shape parameter k > 2
backgr: offset c0

Note

• The width parameter needs to be larger than zero (σ > 0).
• The shape parameter needs to be larger than two (k > 2)
• Default (size) distribution: Monodisperse

Figure 6.3. Plot of Chi-Squared (Area) distribution.
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6.3. Erfc peak

6.3.1. Erfc (Amplitude).

y(x; a, xc, σ, c0) = a erfc

((
x− xc
σ

)2
)

+ c0 (6.17)

Required parameters:

ampl.: amplitude a of the erfc peak
center: location parameter (mode) xc
width: scaling parameter σ > 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.4. Plot of Erfc (Amplitude) distribution.



250 6. PEAK FUNCTIONS

6.3.2. Erfc (Area).

y(x; a, xc, σ, c0) = a
erfc

((
x−xc
σ

)2
)

∫∞
−∞ erfc

((
x−xc
σ

)2
)
dx

+ c0 (6.18)

Required parameters:

area: area a below the erfc peak
center: location parameter (mode) xc
width: scaling parameter σ > 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.5. Plot of Erfc (Area) distribution.
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6.4. Error peak

6.4.1. Error (Amplitude).

y(x; a, xc, σ, k, c0) = a exp

(
−1

2

|x− xc|
2
k

|σ|

)
+ c0 (6.19)

Required parameters:

ampl.: amplitude a of the error distribution
center: location parameter (mode) xc
width: scaling parameter σ 6= 0
shape: shape parameter k > 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The shape parameter needs to be larger than zero (k > 0).
• Default (size) distribution: Monodisperse

Figure 6.6. Plot of Error (Amplitude) distribution.
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6.4.2. Error (Area).

y(x; a, xc, σ, k, c0) =
a

|σ|
k
2 2

k
2

+1Γ
(
k
2

+ 1
) exp

(
−1

2

|x− xc|
2
k

|σ|

)
+ c0 (6.20)

Required parameters:

area: area a below the error distribution
center: location parameter (mode) xc
width: scaling parameter σ 6= 0
shape: shape parameter k > 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The shape parameter needs to be larger than zero (k > 0).
• Default (size) distribution: Monodisperse

Figure 6.7. Plot of Error (Area) distribution.
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6.5. Exponentially Modified Gaussian

6.5.1. Exponentially Modified Gaussian (Amplitude).

y(x; a, xc, σ, γ, c0) =
a

const
exp

(
σ2

2γ2
+
xc − x
γ

)
[
erf

(
x− xc√

2 σ
− σ√

2 γ

)
+

γ

|γ|

]
+ c0 (6.21)

const is calculated numerically so that ”a” represents the amplitude of the distribution.

Required parameters:

ampl.: amplitude a of the distribution
center: location parameter xc
width: scaling parameter σ > 0
distortion: distortion parameter γ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The distortion parameter needs to be non-zero (γ 6= 0).
• Default (size) distribution: Monodisperse
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Figure 6.8. Plot of Exponentially Modified Gaussian (Amplitude) distribution.
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6.5.2. Exponentially Modified Gaussian (Area).

y(x; a, xc, σ, γ, c0) =
a

2γ
exp

(
σ2

2γ2
+
xc − x
γ

)
[
erf

(
x− xc√

2 σ
− σ√

2 γ

)
+

γ

|γ|

]
+ c0 (6.22)

Required parameters:

area: area a below the distribution
center: location parameter xc
width: scaling parameter σ > 0
distortion: distortion parameter γ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ > 0).
• The distortion parameter needs to be non-zero (γ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.9. Plot of Exponentially Modified Gaussian (Area) distribution.
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6.6. Extreme Value

6.6.1. Extreme Value (Amplitude).

y(x; a, xc, σ, c0) = a exp

[
− exp

(
−x− xc
|σ|

)
− x− xc
|σ|

+ 1

]
+ c0 (6.23)

Required parameters:

ampl.: amplitude a of the peak
center: location parameter (mode) xc
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.10. Plot of extreme value (Amplitude) distribution.
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6.6.2. Extreme Value (Area).

y(x; a, xc, σ, c0) =
a

|σ|
exp

[
− exp

(
−x− xc
|σ|

)
− x− xc
|σ|

]
+ c0 (6.24)

Required parameters:

area: area a below the peak
center: location parameter (mode) xc
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.11. Plot of extreme value (Area) distribution.
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6.7. F-Variance

In probability theory and statistics, the F-distribution is a continuous probability
distribution. It is also known as Snedecor’s F distribution or the Fisher-Snedecor distri-
bution. The probability density is given by

pF−var(x, ν1, ν2) =

√
(ν1x)ν1 νν2

2

(ν1x+ ν2)ν1+ν2

xB
(
ν1

2
, ν2

2

) (6.25)

for real x ≥ 0, where ν > 1 and ν2 are positive, and B() is the beta function. For ν1 > 2
the mode of the distribution is defined by

modeF (ν1, ν2) =
ν1 − 2

ν1

ν2

ν2 + 2
(6.26)

6.7.1. F-Variance (Amplitude).
The amplitude version represents a re-parametrization of the standard statistical form.

y(x; a, xc, σ, ν1, ν2) =

{
c0 + a pF−var(z,ν1,ν2)

pF−var(modeF (ν1,ν2),ν1,ν2)
for z > 0

c0 otherwise

=


c0 + a

z
ν1
2 −1

(
1+

ν1−2
ν2+2

) ν1+ν2
2

(1+ ν1
ν2
z)

ν1+ν2
2

(
ν2
ν1

ν1−2
ν2+2

) ν1
2 −1

for z > 0

c0 otherwise

(6.27)

with

z =
x− xc
σ

+
ν1 − 2

ν1

ν2

ν2 + 2
(6.28)

The location parameter xc has been added to enable variable x positioning, and σ to
enable scaling. The mode of the distribution function is xc due to the additional term
ν1−2
ν1

ν2

ν2+2
in the definition of z. The distribution function returns the offset c0 for values

z ≤ 0.

Required parameters:

ampl.: amplitude a of the F-distribution
center: location parameter (mode) xc
width: scaling parameter σ > 0
shape1: shape parameter ν1 > 2
shape2: shape parameter ν2 > 2
backgr: offset c0

Note

• The scale parameter needs to be larger than zero σ > 0
• The first shape parameter needs to be larger than zero ν1 > 2



6.7. F-VARIANCE 259

• The second shape parameter needs to be larger than zero ν2 > 2
• Default (Size) distribution: Monodisperse

Figure 6.12. Plot of F-variance (Amplitude) distribution.

6.7.2. F-Variance (Area).
The area version represents a re-parametrization of the standard statistical form.

y(x; a, xc, σ, ν1, ν2) =

{
c0 + a

σ
pF−var(z, ν1, ν2) for z > 0

c0 otherwise
(6.29)

with

z =
x− xc
σ

+
ν1 − 2

ν1

ν2

ν2 + 2
(6.30)

The location parameter xc has been added to enable variable x positioning, and σ to
enable scaling. The mode of the distribution function is xc due to the additional term
ν1−2
ν1

ν2

ν2+2
in the definition of z. The distribution function returns the offset c0 for values

z ≤ 0.

Required parameters:

area: area a of the F-distribution
center: location parameter (mode) xc
width: scaling parameter σ > 0
shape1: shape parameter ν1 > 2
shape2: shape parameter ν2 > 2
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backgr: offset c0

Note

• The scale parameter needs to be larger than zero σ > 0
• The first shape parameter needs to be larger than zero ν1 > 2
• The second shape parameter needs to be larger than zero ν2 > 2
• Default (Size) distribution: Monodisperse

Figure 6.13. Plot of F-variance (Area) distribution.
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6.8. Gamma

The gamma distribution models sums of exponentially distributed random variables.
The gamma distribution family is based on two parameters. The chi-square and ex-

ponential distributions, which are children of the gamma distribution, are one-parameter
distributions that fix one of the two gamma parameters. The standard form is given by

p(x; k, θ) = xk−1 e−x/θ

θk Γ(k)
for x > 0 and k, θ > 0. (6.31)

When k is large, the gamma distribution closely approximates a normal distribution with
the advantage that the gamma distribution has density only for positive real numbers.
In probability theory and statistics, the gamma distribution is a two-parameter family of
continuous probability distributions. It has a scale parameter θ and a shape parameter k.
If k is an integer then the distribution represents the sum of k independent exponentially
distributed random variables, each of which has a mean of θ (which is equivalent to a
rate parameter of θ−1).

Alternatively, the gamma distribution can be parameterized in terms of a shape
parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter:

p(x;α, β) = xα−1β
α e−β x

Γ(α)
for x > 0. (6.32)

6.8.1. Gamma (Amplitude).
The parameter xc has been added to enable variable x positioning, whereas the +θ(k−1)

adjusts xc so that it represents the mode. c0 is the offset value. The function returns
the offset c0 for those x where it is undefined

y(x) =

{
c0 + a exp(−z)

(
z+k−1
k−1

)k−1
for (z + k − 1) > 0

c0 otherwise
(6.33)

with z = x−xc
θ

Required parameters:

ampl.: amplitude a of the Gamma peak
center: location parameter (mode) xc
width: scaling parameter θ > 0
backgr: offset c0

Note

• The shape parameter needs to be larger than one k > 1.
• The scale parameter needs to be larger than zero θ > 0
• Default (Size) distribution: Monodisperse
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Figure 6.14. Plot of Gamma (Amplitude) distribution.

6.8.2. Gamma (Area).

The parameter xc has been added to enable variable x positioning, whereas the
+θ(k− 1) adjusts xc so that it represents the mode. c0 is the offset value. The function
returns the offset c0 for those x where it is undefined

y(x) =

{
c0 + a

θΓ(k)
exp(−z)zk−1 for z > 0

c0 otherwise
(6.34)

with z = x−xc
θ

+ k − 1

Required parameters:

area: area a of the Gamma peak
center: location parameter (mode) xc
width: scaling parameter θ > 0
backgr: offset c0

Note

• The shape parameter needs to be larger than one k > 1.
• The scale parameter needs to be larger than zero θ > 0
• Default (Size) distribution: Monodisperse
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Figure 6.15. Plot of Gamma (Area) distribution.
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6.9. Gaussian or Normal distribution

6.9.1. Gaussian (Amplitude).

y(x; a, xc, σ, c0) = a exp

[
−1

2

(
x− xc
|σ|

)2
]

+ c0 (6.35)

Required parameters:

ampl.: amplitude a of the peak
center: location parameter (mode) xc
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.16. Plot of Gaussian (Amplitude) distribution.
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6.9.2. Gaussian (Area).

y(x; a, xc, σ, c0) =
a

|σ|
√

2π
exp

[
−1

2

(
x− xc
|σ|

)2
]

+ c0 (6.36)

Required parameters:

area: area a below the peak
center: location parameter (mode) xc
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.17. Plot of Gaussian (Area) distribution.
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6.10. Gaussian-Lorentzian cross product

This distribution function is a Voigt approximation. It combines a Gaussian and
Lorentzian in a multiplicative form. The shape parameter ν varies from 0 to 1. The
pure Lorentzian occurs with ν = 1 and the pure Gaussian with ν = 0 but the transition
from Lorentzian to Gaussian shape in not a linear function of ν
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6.10.1. Gaussian-Lorentzian cross product (Amplitude).

y(x, a, xc, σ, ν, c0) = a

exp

(
−1−ν

2

(
x−xc
|σ|

)2
)

1 + ν
(
x−xc
|σ|

)2 + c0 (6.37)

Required parameters:

amplitude: amplitude a of the peak
center: location parameter (mode) xc
shape: shape parameter ν ∈ [0, 1]
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The shape parameter need to be between 0 and 1 (ν ∈ [0, 1])
• Default (size) distribution: Monodisperse

Figure 6.18. Plot of Gaussian-Lorentzian cross product

(Amplitude) distribution.
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6.10.2. Gaussian-Lorentzian cross product (Area).

y(x, a, xc, σ, ν, c0) = a

√
ν

|σ|π
exp

(
−1−ν

2ν

)
erfc

(√
1−ν
2ν

) exp

(
−1−ν

2

(
x−xc
|σ|

)2
)

1 + ν
(
x−xc
|σ|

)2 + c0 (6.38)

Required parameters:

area: area a below the peak
center: location parameter (mode) xc
shape: shape parameter ν ∈ [0, 1]
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The shape parameter need to be between 0 and 1 (ν ∈ [0, 1])
• Default (size) distribution: Monodisperse

Figure 6.19. Plot of Gaussian-Lorentzian cross product (Area) distribution.
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6.11. Gaussian-Lorentzian sum

This distribution function is another Voigt approximation, which is simply a sum of
Lorentzian and Gaussian with equal FWHM. The shape parameter ν varies from 0 to 1.
The pure Lorentzian occurs with ν = 1 and the pure Gaussian with ν = 0. The width
parameter σ directly computes the full-width at half-maximum (FWHM).
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6.11.1. Gaussian-Lorentzian sum (Amplitude).

y(x, a, xc, σ, ν, c0) =

a

ν
|σ|

√
ln 2
π

exp

(
−4 ln 2

(
x−xc
|σ|

)2
)

+ 1−ν
π|σ|

[
1+4(x−xc|σ| )

2
]

ν
|σ|

√
ln 2
π

+ 1−ν
π|σ|

+ c0 (6.39)

Required parameters:

amplitude: amplitude a of the peak
center: location parameter (mode) xc
shape: shape parameter ν ∈ [0, 1]
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The shape parameter need to be between 0 and 1 (ν ∈ [0, 1])
• Default (size) distribution: Monodisperse

Figure 6.20. Plot of Gaussian-Lorentzian sum (Amplitude) distribution.



6.11. GAUSSIAN-LORENTZIAN SUM 271

6.11.2. Gaussian-Lorentzian sum (Area).

y(x, a, xc, σ, ν, c0) =

2a

 ν

|σ|

√
ln 2

π
exp

(
−4 ln 2

(
x− xc
|σ|

)2
)

+
1− ν

π|σ|
[
1 + 4

(
x−xc
|σ|

)2
]
+ c0 (6.40)

Required parameters:

area: area a below the peak
center: location parameter (mode) xc
shape: shape parameter ν ∈ [0, 1]
width: scaling parameter σ 6= 0
backgr: offset c0

Note

• The width parameter needs to be non-zero (σ 6= 0).
• The shape parameter need to be between 0 and 1 (ν ∈ [0, 1])
• Default (size) distribution: Monodisperse

Figure 6.21. Plot of Gaussian-Lorentzian sum (Area) distribution.
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6.12. generalized Gaussian 1

The generalized Gaussian distribution is one of two families of continuous probabil-
ity distributions, which has an additional shape parameter to the normal distribution.
Known also as the exponential power distribution, or the generalized error distribution,
this is a parametric family of symmetric distributions. It includes all normal and Laplace
distributions, and as limiting cases it includes all continuous uniform distributions on
bounded intervals of the real line.

This family includes the normal distribution when β = 2 (with mean µ and variance
α2

2
) and it includes the Laplace distribution when β = 1. As β → ∞, the density

converges pointwise to a uniform density on (µ− α, µ+ α).
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6.12.1. generalized Gaussian 1 (Amplitude).

y(x, a, µ, α, β) = ae−|
x−µ
α |

β

(6.41)

Required parameters:

amplitude: amplitude a of the peak
center: location parameter (mode) µ
width: scaling parameter α 6= 0
shape: shape parameter β
backgr: offset c0

Note

• The width parameter needs to be non-zero (α 6= 0).
• The area parameter needs to be positive (β > 0).
• Default (size) distribution: Monodisperse

Figure 6.22. Plot of generalized Gaussian 1 (Amplitude) distribution.
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6.12.2. generalized Gaussian 1 (Area).

y(x, a, µ, α, β) = a
β

2αΓ (1/β)
e−|

x−µ
α |

β

(6.42)

Required parameters:

area: area a below the peak
center: location parameter (mode) µ
width: scaling parameter α 6= 0
shape: shape parameter β
backgr: offset c0

Note

• The scaling parameter needs to be positive (α > 0).
• Default (size) distribution: Monodisperse

Figure 6.23. Plot of generalized Gaussian 1 (Area) distribution.
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6.13. generalized Gaussian 2

xmode =

{
α
κ
− α

κ
e−κ

2/2 + ξ if κ 6= 0

ξ if κ = 0
(6.43)
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6.13.1. generalized Gaussian 2 (Amplitude).

y(x) = Aα
√

2π exp

(
−κ

2

2

)
φ(u)

α− κ(x− ξ)
+ c0 (6.44)

where

u =

{
− 1
κ

log
[
1− κ(x−ξ)

α

]
if κ 6= 0

x−ξ
α

if κ = 0
(6.45)

where

φ(x) =
1√
2π

exp

(
−x

2

2

)
(6.46)

Required parameters:

amplitude: amplitude A of the peak
location: location parameter ξ
width: scaling parameter α > 0
shape: shape parameter κ
backgr: offset c0

Note

• The scaling parameter needs to be positive (α > 0).
• Default (size) distribution: Monodisperse

Figure 6.24. Plot of generalized Gaussian 2(Amplitude) distribution.
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6.13.2. generalized Gaussian 2 (Area).

y(x) = A
φ(u)

α− κ(x− ξ)
+ c0 (6.47a)

where

u =

{
− 1
κ

log
[
1− κ(x−ξ)

α

]
if κ 6= 0

x−ξ
α

if κ = 0
(6.47b)

and

φ(u) =
1√
2π

exp

(
−u

2

2

)
(6.47c)

Required parameters:

area: area A below the peak
location: location parameter ξ
width: scaling parameter α > 0
shape: shape parameter κ
backgr: offset c0

Note

• The scaling parameter needs to be positive (α > 0).
• Default (size) distribution: Monodisperse

Figure 6.25. Plot of generalized Gaussian 2 (Area) distribution.
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6.14. Giddings

The Giddings equation was derived by J. C. Giddings (Dynamics of Chromatography,
Part I, Marcel Decker, New York, 1965). The equation provides a theoretical description
for chromatographic peaks. The used formulae have been taken from the Manual of the
Peakfit Software package (SeaSolve Software Inc.), which contains an expression for the
for the Giddings (Area). As the mode xmode of the peak can not be calculated analytical
the amplitude version of this peaks Giddings (Amplitude) calculates first numerically
the mode of the peak and than normalizes the value at xmode to be y(xmode) = A.
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6.14.1. Giddings (Amplitude).
As the mode xmode of this peak can not be calculated analytical this version of the

Giddings peak calculates first numerically the mode of the peak and than normalizes
the value at xmode to be y(xmode) = A.

y(x) =
A

c

√
β

x
I1

(
2
√
βx

σ

)
exp

(
−x+ β

σ

)
(6.48a)

with

c =

√
β

xmode

I1

(
2
√
βxmode

σ

)
exp

(
−xmode + β

σ

)
(6.48b)

Required parameters:

amplitude: amplitude A of the peak
location: location parameter β
width: scaling parameter σ > 0
backgr: offset c0

Note

• The scaling parameter needs to be positive (σ > 0).
• Default (size) distribution: Monodisperse

Figure 6.26. Plot of Giddings (Amplitude) distribution.
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6.14.2. Giddings (Area).

y(x) =
A

1− exp
(
−β
σ

) 1

σ

√
β

x
I1

(
2
√
βx

σ

)
exp

(
−x+ β

σ

)
(6.49)

Required parameters:

area: area A below the peak
location: location parameter β
width: scaling parameter σ > 0
backgr: offset c0

Note

• The scaling parameter needs to be positive (σ > 0).
• Default (size) distribution: Monodisperse

Figure 6.27. Plot of Giddings (Area) distribution.
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6.15. Haarhoff - Van der Linde (Area)

Required parameters:

y(x) =

Aσ
µδ
√

2π
exp

[
−1

2

(
x−µ
σ

)2
]

exp
(
1− µδ

σ2

)
+ 1

2

[
1 + erf

(
x−µ√

2 σ

)] (6.50)

Required parameters:

area: area A below the peak
location: location parameter µ > 0
width: scaling parameter σ > 0
delta: distortion parameter δ 6= 0
backgr: offset c0

Note

• The location parameter needs to be positive (µ > 0).
• The scaling parameter needs to be positive (σ > 0).
• The distortion parameter needs to be nonzero (δ 6= 0).
• Default (size) distribution: Monodisperse

Figure 6.28. Plot of HaarhoffVanderLinde (Area) distribution.
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6.16. Half Gaussian Modified Gaussian (Area)

The Half Gaussian Modified Gaussian (Area) is the mathematical convolution
of a Gaussian with a half-Gaussian response function. There are only two components to
this model, a primary Gaussian, and a response function which convolves or smears the
Gaussian as in the profiles above. As the width of the half-Gaussian response increases,
peaks become more asymmetric or tailed. This function directly fit both tailed and
fronted peaks. The transition from tailed to smooth is continuous and occurs at δ = 0.
The formula has been taken from the Manual of the Peakfit Software package (SeaSolve
Software Inc.).

y(x) = A
exp

(
−1

2
(x−µ)2

σ2+δ2

) [
1 + erf

(
δ(x−µ)√

2 σ
√
σ2+δ2

)]
√

2π
√
σ2 + δ2

(6.51)

Required parameters:

area: area A below the peak
location: location parameter µ
width: scaling parameter σ > 0
distortion: distortion parameter δ 6= 0
backgr: offset c0

Note

• The scaling parameter needs to be positive (σ > 0).
• The distortion parameter needs to be nonzero (δ 6= 0).
• Default (size) distribution: Monodisperse
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Figure 6.29. Plot of Half Gaussian Modified Gaussian (Area) distribution.
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6.17. Inverted Gamma

The inverse gamma distribution is a two-parameter family of continuous probability
distributions on the positive real line, which is the distribution of the reciprocal of a
variable distributed according to the gamma distribution. The inverse gamma distribu-
tion’s probability density function is defined over the support x > 0. The probability
density function is given by

p(x) =
βα

Γ(α)
x−α−1 exp

(
−β
x

)
(6.52)

the mode xmode of the probabilty function is given by xmode = β
α+1

. The shape parameter
α needs to be positive and non-zero as well as the scale parameter β (α > 0, β > 0).
The SASfit version represents a reparametrization of the standard statistical form. The
parameter µ has been added to enable variable x positioning. Adjustment terms have
been added so that µ is the mode xmode. The function returns c0 for those x where it is
undefined. Note that the amplitude form is much faster.



6.17. INVERTED GAMMA 285

6.17.1. Inverted Gamma (Amplitude).

y(x) = A
β exp

(
(x−µ)(α+1)2

x(α+1)+β−µ(α+1)

)(
x(α+1)−µ(α+1)

β
+ 1
)−α

x(α + 1) + β − µ(α + 1)
+ c0 (6.53)

Required parameters:

amplitude: amplitude A of the peak
location: location parameter µ
width: scaling parameter β > 0
shape: shape parameter α > 0
backgr: offset c0

Note

• The scaling parameter needs to be positive (β > 0).
• The shape parameter needs to be positive (α > 0).
• Default (size) distribution: Monodisperse

Figure 6.30. Plot of inverted Gamma (Amplitude) distribution.
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6.17.2. Inverted Gamma (Area).

y(x) = A
(α + 1) exp

(
β(α+1)

x(α+1)+β−µ(α+1)

)(
β(α+1)

x(α+1)+β−µ(α+1)

)α
(x(α + 1) + β − µ(α + 1)) Γ (α)

+ c0 (6.54)

Required parameters:

area: area A below the peak
location: location parameter µ
width: scaling parameter β > 0
shape: shape parameter α > 0
backgr: offset c0

Note

• The scaling parameter needs to be positive (β > 0).
• The shape parameter needs to be positive (α > 0).
• Default (size) distribution: Monodisperse

Figure 6.31. Plot of inverted Gamma (Area) distribution.
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6.18. Kumaraswamy

The Kumaraswamy’s double bounded distribution is a family of continuous probability
distributions defined on the interval [0, 1] differing in the values of their two non-negative
shape parameters, a and b. It is similar to the Beta distribution, but much simpler to
use especially in simulation studies due to the simple closed form of both its probability
density function and cumulative distribution function. The probability density function
of the Kumaraswamy distribution is

p(x;α, β) = αβxα−1(1− xα)β−1. (6.55)

For α > 1 and β > 1 the mode of the distribution reads as

xmode =

(
α− 1

αβ − 1

)1/α

(6.56)

6.18.1. Kumaraswamy (Amplitude).

y(x) =

Aαβ
(

x+xmin
xmax−xmin

)α−1(
1−
(

x+xmin
xmax−xmin

)α)β−1

αβxα−1
mode(1−xαmode)β−1 + c0 for x ∈ [xmin, xmax]

c0 for x /∈ [xmin, xmax]
(6.57)

Required parameters:

ampl.: amplitude A of the Kumaraswamy peak
xmin: continuous lower boundary parameters xmin

xmax: continuous upper boundary parameters xmax

alpha: first shape parameter α > 1
beta: second shape parameter β > 1
backgr: offset c0

Note

• Both shape parameter needs to be larger than one (α, β > 1), as only than the
distribution has a peak shape.
• where the Kumaraswamy distribution is not defined the offset value is returned:
∀x /∈ (xmin, xmax) yBeta(ampl)(x) = c0

• Default (size) distribution: Monodisperse
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Figure 6.32. Plot of Kumaraswamy (Amplitude) distribution.
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6.19. Kumaraswamy (Area)

y(x) =

Aαβ
(

x+xmin
xmax−xmin

)α−1(
1−
(

x+xmin
xmax−xmin

)α)β−1

xmax−xmin
+ c0 for x ∈ [xmin, xmax]

c0 for x /∈ [xmin, xmax]
(6.58)

Required parameters:

area: area A of the Kumaraswamy distribution
xmin: continuous lower boundary parameters xmin

xmax: continuous upper boundary parameters xmax

alpha: first shape parameter α > 0
beta: second shape parameter β > 0
backgr: offset c0

Note

• Both shape parameter needs to be larger than zero (α, β > 0)
• where the Kumaraswamy distribution is not defined the offset value is returned:
∀x /∈ (xmin, xmax) yBeta(area)(x) = c0

• Default (size) distribution: Monodisperse

Figure 6.33. Plot of Kumaraswamy (Area) distribution.
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6.20. Laplace

A random variable has a Laplace distribution if its probability density function is

p(x;x0, σ) =
1

2σ
exp

(
−|x− x0|

σ

)
(6.59)

Here, x0 is a location parameter and σ > 0 is a scale parameter. The Laplace distribution
is also sometimes called the double exponential distribution, because it can be thought of
as two exponential distributions (with an additional location parameter) spliced together
back-to-back, but the term double exponential distribution is also sometimes used to
refer to the Gumbel distribution.

6.20.1. Laplace (Amplitude).

y(x;x0, σ) = A exp

(
−|x− x0|

σ

)
+ c0 (6.60)

Required parameters:

amplitude: amplitude A of the Laplace distribution
center: peak center (mode) x0 of the Laplace distribution
width: width parameter σ > 0
backgr: offset c0

Note

• Width parameter needs to be larger than zero (σ > 0)
• Default (size) distribution: Monodisperse

Figure 6.34. Plot of Laplace (Amplitude) distribution.
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6.20.2. Laplace (Area).

y(x;x0, σ) =
A

2σ
exp

(
−|x− x0|

σ

)
+ c0 (6.61)

Required parameters:

area: area A of the Laplace distribution
center: peak center (mode) x0 of the Laplace distribution
width: width parameter σ > 0
backgr: offset c0

Note

• Width parameter needs to be larger than zero (σ > 0)
• Default (size) distribution: Monodisperse

Figure 6.35. Plot of Laplace (Area) distribution.
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6.21. Logistic

The logistic distribution is a continuous probability distribution. It resembles the
normal distribution in shape but has heavier tails (higher kurtosis). The probability
density function (pdf) of the logistic distribution is given by:

p(x;x0, σ) =
exp

(
−x−x0

σ

)
σ
(
1 + exp

(
−x−x0

σ

))2 =
1

4σ
sech2

(
x− x0

2σ

)
. (6.62)

Because the pdf can be expressed in terms of the square of the hyperbolic secant function
sech, it is sometimes referred to as the sech-squared distribution. The mode, mean and
median values are x0.

6.21.1. Logistic (Amplitude).

y(x;x0, σ) = 4A
exp

(
−x−x0

σ

)(
1 + exp

(
−x−x0

σ

))2 (6.63)

Required parameters:

amplitude: amplitude A of the Logistic distribution
x0: location parameter (mode) x0

sigma: width parameters σ
backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• Default (size) distribution: Monodisperse

Figure 6.36. Plot of Logistic (Amplitude) distribution.
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6.21.2. Logistic (Area).

y(x;x0, σ) = A
exp

(
−x−x0

σ

)
σ
(
1 + exp

(
−x−x0

σ

))2 (6.64)

Required parameters:

area: area A of the Logistic distribution
x0: location parameter (mode) x0

sigma: width parameters σ
backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• Default (size) distribution: Monodisperse

Figure 6.37. Plot of Logistic (Area) distribution
.
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6.22. LogLogistic

As may be indicated by the name, the loglogistic (known as the Fisk distribution in
economics) distribution has certain similarities to the logistic distribution. A random
variable is loglogistically distributed if the logarithm of the random variable is logisti-
cally distributed. The LogLogistic distribution is a two-parameter distribution with
parameters σ and x0. It is similar in shape to the log-normal distribution but has heavier
tails.

The pdf for this distribution is given by:

p(x;µ, σ) =
exp

(
− log(x)−log(µ)

σ

)
σ (x)

(
1 + exp

(
− log(x)−log(µ)

σ

))2 =

(
x
µ

)−1/σ

xσ

[
1 +

(
x
µ

)−1/σ
]2 . (6.65)

where 0 < x < ∞, −∞ < x0 < ∞ and 0 < σ < ∞. The mode of the LogLogistic

distribution, if σ < 1, is given by:

mode = µ

(
1− σ
1 + σ

)σ
(6.66)

6.22.1. LogLogistic (Amplitude).

y(x) =


A

(x−x0
µ )

−1/σ

(x−x0)σ

[
1+(x−x0

µ )
−1/σ

]2 + c0 for x ≥ x0

c0 for x < x0

(6.67)

Required parameters:

amplitude: amplitude A of the LogLogistic distribution
x0: location parameter x0

mu: scale parameter µ
sigma: shape parameters σ
backgr: offset c0

Note

• the width parameter needs to be larger than zero 0 < σ < 1
• Default (size) distribution: Monodisperse
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Figure 6.38. Plot of LogLogistic (Amplitude) distribution.
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6.22.2. LogLogistic (Area).

y(x) = A

(
x
x0

)−1/σ

xσ

[
1 +

(
x
x0

)−1/σ
]2 . (6.68)

Required parameters:

area: area A of the LogLogistic distribution
x0: location parameter x0

mu: scale parameter µ
sigma: shape parameters 0 < σ < 1
backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• Default (size) distribution: Monodisperse

Figure 6.39. Plot of LogLogistic (Area) distribution.
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6.23. Lognormal 4-Parameter

6.23.1. Lognormal 4-Parameter (Amplitude).

y(x) =


c0 + A exp

− ln(2) ln

(
(x−x0)(γ2−1)

σγ
+1

)2

ln(γ)

 for γ 6= 1, γ > 0

c0 + A2−4(x−x0
σ )

2

for γ = 1

(6.69)

For
(
x ≥ x0 − σγ

γ2−1
∧ γ < 1

)
∨
(
x ≤ x0 − σγ

γ2−1
∧ γ > 1

)
the function returns c0.

Required parameters:

amplitude: amplitude A of the LogLogistic distribution
x0: location parameter x0

sigma: width parameter σ > 0
gamma: shape parameters γ > 0
backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• the shape parameter needs to be larger than zero γ > 0
• Default (size) distribution: Monodisperse

Figure 6.40. Plot of Lognormal 4-Parameter (Amplitude) distribution.
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6.23.2. Lognormal 4-Parameter (Area).

y(x) =


c0 + A

√
ln 2 (γ2−1)

σγ ln(γ)
√
π exp

(
ln(γ2)
4 ln 2

) exp

− ln(2) ln

(
(x−x0)(γ2−1)

σγ
+1

)2

ln(γ)

 for γ 6= 1, γ > 0

c0 + A
√

ln 2
σ
√
π

2−4(x−x0
σ )

2

for γ = 1

(6.70)

For
(
x ≥ x0 − σγ

γ2−1
∧ γ < 1

)
∨
(
x ≤ x0 − σγ

γ2−1
∧ γ > 1

)
the function returns c0.

Required parameters:

area: area A of the LogLogistic distribution
x0: location parameter x0

sigma: width parameter σ > 0
gamma: shape parameters γ > 0
backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• the shape parameter needs to be larger than zero γ > 0
• Default (size) distribution: Monodisperse

Figure 6.41. Plot of Lognormal 4-Parameter (Area) distribution.
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6.24. LogNormal

The LogNormal distribution is defined with reference to the normal distribution. A
random variable is Lognormally distributed if the logarithm of the random variable is
normally distributed.

The LogNormal distribution is commonly used for general reliability analysis, cycles-
to-failure in fatigue, material strengths and loading variables in probabilistic design.
Another advantage of the LogNormal distribution is that it is positive-definite, so it is
often useful for representing quantities that cannot have negative values. LogNormal
distributions have proven useful as distributions for rainfall amounts, for the size dis-
tributions of aerosol particles or droplets, and for many other cases. The log-normal
distribution has the probability density function

f(x′) =
1

σ
√

2π
exp

(
−1

2

(
x′ − µ′

σ

)2
)

(6.71)

where µ′ = ln(µ) and x′ = ln(x). The lognormal pdf can be obtained, realizing that for
equal probabilities under the normal and lognormal pdfs, incremental areas should also
be equal, or:

f(x;µ, σ)dx = f(x′;µ, σ)dx′ (6.72)

Taking the derivative yields:

dx′ =
dx

x
(6.73)

Substitution yields:

f(x;µ, σ) =
f(x′;µ, σ)

x
(6.74)

where:

f(x;µ, σ) =
1

xσ
√

2π
exp

(
−1

2

(
ln(x)− ln(µ)

σ

)2
)

(6.75)

for x ∈ (0,∞], where µ > 0 and σ 6= 0 are the location and scale parameter. The mode
of the distribution is

mode = µ exp
(
−σ2

)
(6.76)
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6.24.1. LogNormal (Amplitude).

y(x) =


A exp(− 1

2
σ2)µ

x−x0
exp

(
−1

2

(
ln(x−x0)−ln(µ)

σ

)2
)

+ c0 for x > x0

c0 for x ≤ x0

(6.77)

Required parameters:

amplitude: amplitude A of the LogNormal distribution
mu: location parameter µ
sigma: width parameter σ > 0
x0: shift parameters x0

backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• the location parameter needs to be larger than the shift parameter µ > x0

• Default (size) distribution: Monodisperse

Figure 6.42. Plot of LogNormal (Amplitude) distribution.
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6.24.2. LogNormal (Area).

y(x) =

 A
(x−x0)σ

√
2π

exp

(
−1

2

(
ln(x−x0)−ln(µ)

σ

)2
)

+ c0 for x > x0

c0 for x ≤ x0
(6.78)

Required parameters:

area: area A of the LogNormal distribution
mu: location parameter µ
sigma: width parameter σ > 0
x0: shift parameters x0

backgr: offset c0

Note

• the width parameter needs to be larger than zero σ > 0
• the location parameter needs to be larger than the shift parameter µ > x0

• Default (size) distribution: Monodisperse

Figure 6.43. Plot of LogNormal (Area) distribution.
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6.25. Lorentzian or Cauchy distribution

The CauchyLorentz Distribution, named after Augustin Cauchy and Hendrik
Lorentz, is a continuous probability distribution. As a probability distribution, it is
known as the Cauchy distribution, while among physicists, it is known as a Lorentz
distribution, or a Lorentz(ian) function or the BreitWigner distribution. Its importance
in physics is due to it being the solution to the differential equation describing forced
resonance. The Lorntzian distribution has the probability density function

f(x;x0, σ) =
1

πσ
[
1 +

(
x−x0

σ

)2
]

=
1

π

[
σ

(x− x0)2 + σ2

]
(6.79)

where x0 is the location parameter, specifying the location of the peak of the distribution,
and σ is the scale parameter which specifies the half-width at half-maximum (HWHM).

6.25.1. Lorentzian (Amplitude).

Figure 6.44. Plot of Lorentzian (Amplitude) distribution.
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6.25.2. Lorentzian (Area).

Figure 6.45. Plot of Lorentzian (Area) distribution.
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6.26. Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution describes particle speeds in gases, where the
particles do not constantly interact with each other but move freely between short col-
lisions. It describes the probability of a particle’s speed (the magnitude of its velocity
vector) being near a given value as a function of the temperature of the system, the
mass of the particle, and that speed value. This probability distribution is named after
James Clerk Maxwell and Ludwig Boltzmann.

The Maxwell-Boltzmann distribution is usually thought of as the distribution for
molecular speeds, but it can also refer to the distribution for velocities, momenta, and
magnitude of the momenta of the molecules, each of which will have a different prob-
ability distribution function, all of which are related. Two Maxwell distributions have
been implemented, one distribution for speed and a generalized Maxwell distribution,
which includes also the energy distribution.

The generalized Maxwell distribution is here defined as

p(x;x0, σ, n,m) =

0 for x < x0

(x−x0)m exp(− 1
2(x−x0

|σ| )
n
)

2(1+m)/n|σ|1+m 1
|n|Γ( 1+m

n )
for x ≥ x0.

(6.80)

where x0 is the location parameter, specifying the location of the peak of the distribution,
and σ is the scale parameter which specifies the width. The mode of the distribution is
given by

xmode =

(
2m

n

)1/n

|σ|+ x0. (6.81)

For the case m = n = 2 one gets the ”Maxwell-Boltzmann distribution” to refers to the
distribution of speed. To get the distribution for the energy one has to set m = 1/2 and
n = 1. In case of the width parameter σ always the modulus is used in the calculation
of the distribution function to avoid negative values for which the function is not always
well defined. For σ = 0 the distribution function is not defined.
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6.26.1. Maxwell (Amplitude).

y(x;A, σ, x0, y0) =


y0 for x < x0

y0 + A (x−x0)2

(xmode−x0)2

exp
(
− 1

2(x−x0
σ )

2
)

exp
(
− 1

2(xmode−x0
σ )

2) for x ≥ x0

(6.82)

with xmode =
√

2 |σ|+ x0.

Figure 6.46. Plot of Maxwell (Amplitude) distribution.
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6.26.2. Maxwell (Area).

y(x;A, σ, x0, y0) =

{
y0 for x < x0

y0 +
√

2
π
A(x−x0)2

σ3 exp
(
−1

2

(
x−x0

σ

)2
)

for x ≥ x0

(6.83)

Figure 6.47. Plot of Maxwell (Area) distribution.
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6.26.3. generalized Maxwell (Amplitude).

y(x;x0, σ, n,m) =

y0 for x < x0

y0 + A
(x−x0)m exp(− 1

2(x−x0
|σ| )

n
)

(xmode−x0)m exp(− 1
2(xmode−x0

|σ| )
n
)

for x ≥ x0

(6.84)

with xmode =
(

2m
n

)1/n |σ|+ x0.

Figure 6.48. Plot of generalized Maxwell (Amplitude) distribution.



308 6. PEAK FUNCTIONS

6.26.4. generalized Maxwell (Area).

y(x;x0, σ, n,m) =

0 for x < x0

A
(x−x0)m exp(− 1

2(x−x0
|σ| )

n
)

2(1+m)/n|σ|1+m 1
|n|Γ( 1+m

n )
for x ≥ x0.

(6.85)

Figure 6.49. Plot of generalized Maxwell (Area) distribution.
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6.27. Pearson-IV

Pearson type IV distribution:

p(x) =

∣∣∣∣Γ(m+ ν
2
i)

Γ(m)

∣∣∣∣2
αB
(
m− 1

2
, 1

2

) [1 +

(
x− λ
α

)2
]−m

exp

[
−ν arctan

(
x− λ
α

)]
. (6.86)

The normalizing constant involves the complex Gamma function (Γ) and the Beta func-
tion (B).

6.27.1. Pearson-IV (Amplitude).

Figure 6.50. Plot of Pearson-IV (Amplitude) distribution.
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6.27.2. Pearson-IV (Area).

Figure 6.51. Plot of Pearson-IV (Area) distribution.
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6.28. Pearson-VII

The Pearson-VII model has been used as an approximation for the Voigt function.
The parameter σ is the FWHM (full-width at half-maxima). When m is 1.0, the function
is an exact Lorentzian. As the m-power term increases, the function tends toward the
Gaussian. For m ∼ 50, the function is essentially Gaussian. The Pearson VII function
is a different parametrization of the Student-t distribution function and reads as

p(x) =
1

αB
(
m− 1

2
, 1

2

) [1 +

(
x− λ
α

)2
]−m

(6.87)

with α = 1
2
σ/
√

21/m − 1 we get

p(x) =
2
√

21/m − 1

σB
(
m− 1

2
, 1

2

) [1 + 4

(
x− x0

σ

)2 (
21/m − 1

)]−m
(6.88)

where B is the Beta function.
6.28.1. Pearson-VII (Amplitude).

Figure 6.52. Plot of Pearson-VII (Amplitude) distribution.
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6.28.2. Pearson-VII (Area).

Figure 6.53. Plot of Pearson-VII (Area) distribution.
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6.29. Pulse Peak

p(x) =
2

σ
exp

(
x− x0

σ

)(
1− exp

(
x− x0

σ

))
(6.89)

mode = x0 − σ ln

(
1

2

)
(6.90)

6.29.1. Pulse Peak (Amplitude).

Figure 6.54. Plot of Pulse Peak (Amplitude) distribution.



314 6. PEAK FUNCTIONS

6.29.2. Pulse Peak (Area).

Figure 6.55. Plot of Pulse Peak (Area) distribution.
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6.30. Pulse Peak with 2nd Width Term

p(x) =
σ1 + σ2

σ2
2

(
1− exp

(
x− x0

σ1

))
exp

(
x− x0

σ2

)
(6.91)

mode = x0 − σ1 ln

(
σ1

σ2 + σ1

)
(6.92)

6.30.1. Pulse Peak with 2nd Width Term (Amplitude).

Figure 6.56. Plot of pulse with 2nd width (Amplitude) distribution.
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6.30.2. Pulse Peak with 2nd Width Term (Area).

Figure 6.57. Plot of pulse with 2nd width (Area) distribution.
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6.31. Pulse Peak with Power Term

p(x) =
γ + 1

σ

(
1− exp

(
x− x0

σ

))γ
exp

(
x− x0

σ

)
(6.93)

mode = x0 − σ ln

(
1

γ + 1

)
(6.94)

6.31.1. Pulse Peak with Power Term (Amplitude).

Figure 6.58. Plot of pulse with power term (Amplitude) distribution.
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6.31.2. Pulse Peak with Power Term (Area).

Figure 6.59. Plot of pulse with power term (Area) distribution.
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6.32. Student-t

p(x) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

x2

ν

)−( ν+1
2

)

(6.95)

6.32.1. Student-t (Amplitude).

Figure 6.60. Plot of Student-t (Amplitude) distribution.
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6.32.2. Student-t (Area).

Figure 6.61. Plot of Student-t (Area) distribution.
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6.33. Voigt

The Voigt profile is a spectral line profile found in all branches of spectroscopy in which
a spectral line is broadened by two types of mechanisms, one of which alone would
produce a Gaussian profile (usually, as a result of the Doppler broadening), and the
other would produce a Lorentzian profile. The Voigt profile is then a convolution of a
Lorentz profile and a Gaussian profile:

V (x, xc|σ, γ) =

∞∫
∞

D(x′|σ)L(x− xc − x′|γ) dx′ (6.96a)

where x− xc is distance from line center xc, D(x|σ) is the centered Doppler profile:

D(x|σ) =
e−x

2/2σ2

σ
√

2π
(6.96b)

and L(x− xc|γ) is the centered Lorentzian profile:

L(x− xc|γ) =
γ

π((x− xc)2 + γ2)
. (6.96c)

The defining integral can be evaluated as [20, 50]:

V (x, xc) =
<[w(z)]

σ
√

2π
(6.96d)

where <[w(z)] is the real part of the complex error function of z and

z =
x− xc + iγ

σ
√

2
(6.96e)

The full width at half maximum (FWHM) of the Voigt profile can be found from the
widths of the associated Gaussian and Lorentzian widths. The FWHM of the Gaussian
profile is fG = 2σ

√
2 ln(2) . The FWHM of the Lorentzian profile is just fL = 2γ. Define

φ = fL/fG. Then the FWHM of the Voigt profile (fV) can be estimated as:

fV ≈ fG

(
1− c0c1 +

√
φ2 + 2c1φ+ c2

0c
2
1

)
(6.97)

where c0 = 2.0056 and c1 = 1.0593. This estimate will have a standard deviation of error
of about 2.4 percent for values of φ between 0 and 10. Note that the above equation will
have the proper behavior in the limit of φ = 0 and φ = ∞. A different approximation
was given by [69, 60]

fV ≈ 0.5346fL +
√

0.2166f 2
L + f 2

G (6.98)

with an accuracy of 0.02
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6.33.1. Voigt (Amplitude).

The amplitude version of the Voigt peak is parameterized as

VAmplitude(x|A, σ, γ) = A

∞∫
−∞

exp(−u2)

γ2

2σ2 +
(
x−xc√

2 σ
− u
)2 du

∞∫
−∞

exp(−u2)
γ2

2σ2 + u2
du

= A
V (x, xc|σ, γ)

V (xc, xc|σ, γ)
(6.99)

Required parameters:

ampl.: amplitude A of the Voigt peak
center: location parameter (mode) xc
sigma: width of Doppler (Gaussian) contribution σ > 0
gamma: width of Lorentzian contribution γ > 0
backgr: offset c0

Note

• The Doppler (Gaussian) width parameter needs to be larger than 0 σ > 0.
• The Lorentzian width parameter needs to be larger than 0 γ > 0.
• Default (Size) distribution: Monodisperse

Figure 6.62. Plot of Voigt (Area) distribution.
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6.33.2. Voigt (Area).

The area version of the Voigt peak is parameterized as

VArea(x|A, σ, γ) = A
γ

2π
√
π σ2

∞∫
−∞

exp(−u2)

γ2

2σ2 +
(
x−xc√

2 σ
− u
)2 du = AV (x, xc|σ, γ)

(6.100)

Required parameters:

area: area A of the Voigt peak
center: location parameter (mode) xc
sigma: width of Doppler (Gaussian) contribution σ > 0
gamma: width of Lorentzian contribution γ > 0
backgr: offset c0

Note

• The Doppler (Gaussian) width parameter needs to be larger than 0 σ > 0.
• The Lorentzian width parameter needs to be larger than 0 γ > 0.
• Default (Size) distribution: Monodisperse

Figure 6.63. Plot of Voigt (Area) distribution.
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6.33.3. Weibull.

The Weibull distribution is a continuous probability distribution. It is named after
Waloddi Weibull who described it in detail in 1951, although it was first identified
by Fréchet (1927) and first applied by Rosin & Rammler (1933) to describe the size
distribution of particles. The probability density function of a Weibull random variable
x is:

p(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k x ≥ 0

0 x < 0
(6.101)

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.
For k > 1 the mode is given by

mode = λ

(
k − 1

k

) 1
k

if k > 1. (6.102)

6.33.4. Weibull (Amplitude).
The amplitude version represents a reparametrization of the standard statistical form.

The parameter x0 has been added to enable variable x positioning. An additional ad-
justment term has been added so that x0 represents the mode. The function returns c0

for those x where it is undefined.

u =
k − 1

k

z =
x− x0

λ
+ u1/k

y(x;x0, k, λ, c0, A) =

{
c0 + Au−uzk−1 exp

(
−zk

)
z >= 0

c0 z < 0
(6.103)

Figure 6.64. Plot of Weibull (Amplitude) distribution.
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6.33.5. Weibull (Area).
The area version represents a reparametrization of the standard statistical form. The

parameter x0 has been added to enable variable x positioning. An additional adjustment
term has been added so that x0 represents the mode. The function returns c0 for those
x where it is undefined.

z =
x− x0

λ
+

(
k − 1

k

)1/k

y(x;x0, k, λ, c0, A) =

{
c0 + A k

λ
zk−1 exp

(
−zk

)
z >= 0

c0 z < 0
(6.104)

Figure 6.65. Plot of Weibull (Area) distribution.





CHAPTER 7

Plugin functions

7.1. Very anisotropic particles (local planar & local cylindrical objects)

For very anisotropic random orientated particles the form factor can be factorize
according to Porod [80] in a cross section term Pcs(Q) for the shorter dimension and a
shape factor P ′(Q) for the long dimension.

I(Q) = P ′(Q)Pcs(Q). (7.1)

In this plugin the form factors of two types of anisotropic particles are collected, those
with a local cylindrical and with a local planar geometry. In case of local planar objects
the cross section term Pcs(Q) can be homogeneous, a centro-symmetric bilayer, a gauss-
ian bilayer, etc. . This cross section factor can than be combined with the overall shape
factor P ′(Q) of for examples a thin spherical shell of elliptical shell, a then cylindrical
shell or a thin disc. As the total form factor is the product of the cross-section form
factor and a shape form factor one can either programm all combination of cross-section
and shape factors into individual form factor functions or one can programm the cross-
section factors as form factor and the shape factor as a structure factors. Using the
monodisperse approximation yields than the same result.

In this plugin the product of the cross-section and shape term have been imple-
mented as form factor under ”by plugin|anisotropic obj.|local planar obj.”
and ”by plugin|anisotropic obj.|local cylindrical obj.”. The cross-section
terms alone are also implemented as form factors under ”by plugin|anisotropic

obj.|Pcs(Q) for planar obj.” and ”by plugin|anisotropic obj.|Pcs(Q) for

cylindrical obj.”. The shape factors are also available as structure fac-
tors under ”by plugin|anisotropic obj.|P’Q): local planar obj.” and ”by
plugin|anisotropic obj.|P’(Q): local cylindrical obj.”.

The cross-section form factors can be easily calculated if the scattering length density
contrast profile ∆ηcs(r) is known. For structures with a local planar geometry and a
symmetric cross-section the form factor is given by

P planar
cs (Q) =

2

∞∫
0

∆ηcs(r) cos(Qr) dr

2

(7.2)

In case of local cylindrical particles with a centro-symmetric scattering length density
distribution the form factor is given by

P cylindrical
cs (Q) =

2π

∞∫
0

∆ηcs(r)J0(Qr)r dr

2

(7.3)

327
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7.1.1. Pcs(Q) for planar obj.

The cross-section form factors with local planar geometry are valid when the cross-
section dimension is much smaller the radius of curvature of the locally planar structure.

Figure 7.1. for local planar particles the cross section dimension is much
smaller then the radius of curvature of the particle

Several cross-section profiles for local planar objects have been implemented, like a
homogeneous cross-section, cross-section with two infinitely thin plates, layered centro-
symmetric cross-section, bilayer with a Gaussian scattering length density profile, layer
with Gaussian chains attached to the surface. These form factors are supposed to be
combined with a shape factor for local planar objects which are implemented as structure
plugins under ”by plugin|anisotropic obj.|P’Q): local planar obj.”.
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7.1.1.1. Pcs(Q) for a homogeneous cross-section.

Figure 7.2. Plane with a homogeneous cross-section of thickness t.

This cross-section form factor describes the scattering of a layer with homogeneous
scattering length density ηL in a matrix of a scattering length density ηsolv. The thickness
can have a distribution described by a log-normal distribution according to eq. 5.3b.

Pcs(Q, σt, t) =

∞∫
0

LogNorm(x, 1, σt, 1, t)

[
(ηL − ηsolv)x

sin(Qx/2)

Qx/2

]2

dx (7.4)

Input parameters for Pcs:homogeneousPlate:

t: most probable layer thickness t
sigm t: width σt of thickness distribution (LogNorm)
dummy: unused disabled parameter
dummy: unused disabled parameter
eta l: scattering length density of layer ηL
eta solv: scattering length density of solvent ηsolv

Note

• This form factor is supposed to be combined with a shape factor for lo-
cal planar objects which are implemented as structure plugins under ”by
plugin|anisotropic obj.|P’Q): local planar obj.”.
• As the form factor already have the width distribution included one normally

uses in SASfit as a size distribution the Delta-distribution.
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Figure 7.3. Scattering curve for the form factor
”Pcs:homogeneousPlate” only (insert) and in combination with a
structure factor ”P’(Q): Thin Spherical Shell”.
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7.1.1.2. Pcs(Q) for two infinitely thin parallel layers.

Figure 7.4. Two infinitely thin parallel layers separated by a distance t.

This cross-section form factor describes the scattering of two infinitely thin paral-
lel layers. The separation distance can have a distribution described by a log-normal
distribution according to eq. 5.3b.

Pcs(Q, σT , T ) =

∞∫
0

LogNorm(x, 1, σT , 1, T ) cos2(Qx/2) dx (7.5)

Input parameters for Pcs:TwoInfinitelyThinLayers:

t: most probable layer separation t
sigm t: width σt of separation distribution (LogNorm)

Note

• This form factor is supposed to be combined with a shape factor for lo-
cal planar objects which are implemented as structure plugins under ”by
plugin|anisotropic obj.|P’Q): local planar obj.”.
• As the form factor already have the width distribution included one normally

uses in SASfit as a size distribution the Delta-distribution.
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Figure 7.5. Scattering curve for the form factor
”Pcs:TwoInfinitelyThinLayers” only (insert) and in combination
with a structure factor ”P’(Q): Thin Spherical Shell”.
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7.1.1.3. Pcs(Q) for a layered centro symmetric cross-section structure.

Figure 7.6. Two layered centro symmetric structure with a core thick-
ness of Lc and an outer layer thickness LLsh

. The corresponding scattering
length densities of the core, the shell layer and the solvent are LLc , LLsh

,
and LLsolv

.

This cross-section form factor describes the scattering of a layered centro symmetric
cross-section structure. Both the core thickness as well as the shell thickness can have a
distribution described by a log-normal distribution as defined in eq. 5.3b.

Pcs(Q, σLc , Lc, σLsh
, Lsh, ηLc , ηLsh

, ηsol) =
∞∫

0

LogNorm(v, 1, σLc , 1, Lc)

∞∫
0

LogNorm(u, 1, σLsh
, 1, Lsh)

[
(ηLsh

− ηsolv)(v + 2u) sin
(
Qv+2u

2

)
Qv+2u

2

−
(ηLsh

− ηLc)v sin
(
Qv

2

)
Qv

2

]2

du dv (7.6)

Input parameters for Pcs:LayeredCentroSymmetricXS:

L c: most probable layer separation Lc

sigm Lc: width σLc of core thickness distribution (LogNorm)
L sh: most probable shell thickness Lsh

sigm Lsh: width σLc of shell thickness distribution (LogNorm)
eta Lc: scattering length density of core layer ηLc

eta Lsh: scattering length density of shell layer ηLsh

eta solv: scattering length density of solvent ηsolv

Note

• This form factor is supposed to be combined with a shape factor for lo-
cal planar objects which are implemented as structure plugins under ”by
plugin|anisotropic obj.|P’Q): local planar obj.”.
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• As the form factor already have the width distribution included one normally
uses in SASfit as a size distribution the Delta-distribution.

Figure 7.7. Scattering curve for the form factor
”Pcs:LayeredCentroSymmetricXS” only (insert) and in combination
with a structure factor ”P’(Q): Thin Spherical Shell”.
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7.1.1.4. Pcs(Q) for a bilayer with a Gaussian electron density profile [71, 70].

Figure 7.8. The plot shows a model for the Gaussian description of
the bilayer electron density profile according to eq. 7.7. The origin of the
profile is set to the bilayer centre. The model encountering a single Gauss-
ian for the head group at ±t/2. ηout is the amplitude of the headgroup
Gaussian and ηcore that of the hydrocarbon chains with respect to the av-
erage electron density of water. The FWHM of the Gaussian profiles are
2
√

2 ln 2 σout and 2
√

2 ln 2 σcore.

This model for a bilayer is using a real-space representation of the electron density
profile using a Gaussian description [71, 70]. In comparison to other models it is simpler
and requiring the adjustment of only four parameters. The electron density profile (Fig.
7.8) is described by

η(r) = ηout

[
exp

(
−
(
r − t

2

)2

2σ2
out

)
+ exp

(
−
(
r + t

2

)2

2σ2
out

)]

+ ηcore exp

(
− r2

2σ2
core

) (7.7)

The scattering intensity of this cross section profile of a planar object can be calculated
by eq. 7.2 and computes as

Fout (Q,D, σout, ηout) =
√

2π σoutηout exp

(
−1

2
(Qσout)

2

)
cos

(
Q
t

2

)
(7.8)

Fcore (Q, σcore, ηcore) =
√

2π σcoreηcore exp

(
−1

2
(Qσcore)

2

)
(7.9)
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so that

Pcs (Q) = [Fcore (Q, σcore, ηcore) + 2Fout (Q,D, σout, ηout)]
2 (7.10)

Input parameters for Pcs:BilayerGauss:

sigma core: width σout of the central Gaussian profile
eta core: scattering length density contrast of the central Gaussian profile
sigma out: width σout of the two outer Gaussian profiles
eta out: scattering length density contrast of the two outer Gaussian profiles
t: distance between the centers of the outer Gaussian profiles

Note

• This form factor is supposed to be combined with a shape factor for lo-
cal planar objects which are implemented as structure plugins under ”by
plugin|anisotropic obj.|P’Q): local planar obj.”.

(a) Plot of the cross section form factor Pcs in
combination with a structure factor ”P’(Q):
Thin Disc” as the shape factor P ′(Q).

(b) Plot of the cross section form factor Pcs

only according to eq. 7.10. The parameters
for the profile are the same than in Fig. 7.9a

Figure 7.9. Scattering curve for the cross-section form factor
”Pcs:BilayerGaussian”. For some of the curves a distance distribu-
tion of the heads groups are assumed being Gaussian (see eq. 5.19a), i.e.
calculating

∫∞
0

Gauss(D, 1, σGauss
D , D0)Pcs (Q,D) dD.
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7.1.2. Pcs(Q) for cylindrical obj.

The cross-section form factors with cylindrical geometry are valid when the cross-
section dimension is much smaller than the segment length or Kuhn length of the local
cylindrical structure.

Figure 7.10. Sketch of wormlike structures which represent local cylin-
drical structures. The cross-section 2Rcs is much smaller than the Kuhn
length lp, which is a typical length scale where a freely jointed chain can
randomly orient in any direction without the influence of any forces, inde-
pendent of the directions taken by other segments. For the cross-section
term several profiles have been implemented, like homogeneous round pro-
file or elliptical shell profile
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7.1.2.1. Pcs(Q) for homogeneous cross-section of a cylinder.

This cross-section form factor describes the scattering of circular and homogeneous
cross section. The cross-section radius R can have a distribution described by a log-
normal distribution according to eq. 5.3b.

Pcs(Q, σR, R) =

∞∫
0

LogNorm(x, 1, σR, 1, R)

(
(ηcore − ηsolv) πx2 2J1(Qx)

Qx

)2

dx

(7.11)

Input parameters for Pcs:homogeneousCyl:

R: most probable radius R
sigm R: width σR of radius distribution (LogNorm)
dummy: not used
dummy: not used
dummy: not used
dummy: not used
dummy: not used
eta core: scattering length density of the core ηcore

dummy: not used
eta solv: scattering length density of the solvent ηsolv

Note

• This form factor is supposed to be combined with a shape factor for lo-
cal cylindrical objects which are implemented as structure plugins under ”by
plugin|anisotropic obj.|P’Q): local cylindrical obj.”.
• As the form factor already have the width distribution included one normally

uses in SASfit as a size distribution the Delta-distribution.
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Figure 7.11. Scattering curve for the form factor
”Pcs:homogeneousCyl” only (insert) and in combination with a
structure factor ”P’(Q): Thin Rod”.
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7.1.2.2. Pcs(Q) for cross-section of a cylindrical shell with elliptical cross section.

This cross-section form factor describes the scattering of an elliptical core-shell cross-
section. The cross-section radius R can have a distribution with a width of sigma as
described by a log-normal distribution according to eq. 5.3b.

Pcs(Q) =

∞∫
0

LogNorm(x, 1, σR, 1, R) ×

π/2∫
0

[
(ηshell − ηsolv)Fcs,ell(Q,R + t, ε, φ)

+ (ηcore − ηshell)Fcs,ell(Q,R, ε, φ)
]2

dφ

(7.12)

with

Fcs,ell (Q,R, ε,∆ηφ) =
2J1(Qr(R, ε, φ))

Qr(R, ε, φ)
(7.13a)

r(R, ε, φ) = R

√
sin2 φ+ ε2 cos2 φ (7.13b)

Input parameters for Pcs:homogeneousCyl:

R: most probable radius R
sigm R: width σR of radius distribution (LogNorm)
epsilon: eccentricity ε of ellipyical cross-section
t: shell thickness t
dummy: not used
dummy: not used
dummy: not used
eta core: scattering length density of the core ηcore

eta shell: scattering length density of the shell ηshell

eta solv: scattering length density of the solvent ηsolv

Note

• This form factor is supposed to be combined with a shape factor for lo-
cal cylindrical objects which are implemented as structure plugins under ”by
plugin|anisotropic obj.|P’Q): local cylindrical obj.”.
• As the form factor already have the width distribution included one normally

uses in SASfit as a size distribution the Delta-distribution.
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7.1.3. P’(Q) for local planar obj.

7.1.4. P’(Q) for local cylindrical obj.

7.1.5. local planar obj.

7.1.6. local cylindrical obj.
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7.2. JuelichCoreShell

This model considers a dense core and original two shells [104]. Besides, it considers
two different density profiles: a parabolic and a star-like profile for the second shell.

ηshell(r) ∝ r−x for starlike profile x = 4/3 (7.14)

ηshell(r) ∝ 1−
(
r

Lp

)2

for parabolic profile of thickness Lp (7.15)

Model parameters:

bsolv: scattering length density of the solvent
I0: forward scattering
Mcore: molecular weight of core (g/mol)
Mbrush: molecular weight brush (g/mol)
ρcore: mass density of core matter (g/cm3)
ρbrush: mass density of brush matter (g/cm3)
bcore: scattering length density of core material (cm−2)
bbrush: scattering length density of brush material (cm−2)
Nagg: aggregation number (real number)
d+
c : extra radius of core (compared to compact)
p12: relative distribution of shell amount in (1stshell:2ndshell) (0 . . .∞)
d+

1 : extra radius of first shell (compared to compact)
d+

2 : extra radius of second shell (compared to compact)
σc: core smearing
σ1: smearing of 1st shell
σ2: smearing of 2nd shell
xstar: relative distribution of parbolic:starlike profile in 2nd shell, one has to put

a very high value in order to consider only a star-like profile.
γ: for star-like profile the exponent is 4/3 and for a constant profile chose 0
Lp: thickness of parabolic brush (must fit in 2nd shell!)

I(Q) = [∆bcFc + ∆bb(F1 + F2)]2 (7.16)

∆bc = bcore − bsolv(1− fcore) (7.17)

∆bb = bbrush − bsolv(1− fbrush) (7.18)

Vc and Vb are the core and shell bulk volumes respectively.

Mass Conservation:
From the given values of the molecular weights of the two blocks and their densities,
and an assumed aggregation number Nagg, the bulk volumes of the core and the shell,
Vc and Vb, can be calculated.
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Core:

bulk core volume: Vc =
NaggMcore

ρcoreNa

(7.19)

minimal radius of core: R0
c =

(
3

4π
Vc

)1/3

(7.20)

effective core radius: Rc = R0
c + d+

c (7.21)

swollen core volume: Vsc =
4

3
πR3

c (7.22)

swelling factor: sc =
Vsc
Vc

(7.23)

Shell:

bulk shell volume: Vb =
NaggMshell

ρshellNa

(7.24)

The relative amount of shell material in the first shell fshell1 is controlled by the parameter
p12, so that the portion of the second shell fshell2 can be obtained through:

fshell1 =
p12

1 + p12

(7.25)

fshell2 = 1− fshell1 (7.26)

Shell 1:

portion of the total shell volume in first shell: Vs1 = fshell1Vb (7.27)

minimal radius of shell: Rc1 =

(
3

4π
(Vsc + Vs1)

)1/3

(7.28)

effective core radius: R1 = Rc1 + d+
1 (7.29)

swollen volume of first shell: Vs1s =
4

3
πR3

1 (7.30)

swelling factor: ss1 =
Vs1s − Vsc

Vs1
(7.31)

Shell 2:

portion of the total shell volume in second shell: Vs2 = fshell2Vb (7.32)

minimal radius of shell: Rc2 =

(
3

4π
(Vs1s + Vs2)

)1/3

(7.33)

effective core radius: R2 = Rc2 + d+
2 (7.34)

swollen volume of second shell: Vs2s =
4

3
πR3

2 (7.35)

swelling factor: ss2 =
Vs2s − Vs1s

Vs2
(7.36)

fraction of star-like density profile in 2nd shell: fstar = 2
arctan(|pstar|)

π
(7.37)



344 7. PLUGIN FUNCTIONS

Together with the profile functions Φc(r, Rc), Φ1(r, R1, R2), Φ2(r, R1, R2, fstar) and

fFermi(x) =
1

1 + exp(x)
(7.38)

the volumes of the core and two shells and the corresponding form factor are determined
by numerical integration.

Profiles:

Φc(r, Rc) = fFermi(r −Rc) dr (7.39)

Φ1(r, R1, R2) = (1− fFermi(r −R1)) fFermi(r −R2) dr (7.40)

for r < R1

Φ2(r, R1, R2, fstar, γ) =(1− fFermi(r −R1)) fFermi(r −R2)

×
[
(1− fstar) +

fstar

Rγ
1

]
(7.41)

for r > R1

Φ2(r, R1, R2, fstar, γ, Lp) =(1− fFermi(r −R1)) fFermi(r −R2)

×

[
(1− fstar)

(
1−

(
r −R1

Lp

)2
)

+
fstar

rγ

]
(7.42)

Input Parameters for model JuelichCoreShell:

C: scaling constant C
Mcore: molecular weight core (g/mol) Mcore

Mbrush: molecular weight brush (g/mol) Mbrush

rho core: mass density core matter (g/cm3) ρcore

rho brush: mass density brush matter (g/cm3) ρbrush

b core: scattering length density of core material (cm−2) bcore

b brush: scattering length density of brush material (cm−2) bbrush

Nagg: aggregation number Nagg

d1 plus: extra radius of shell1=core (compared to compact) d+
c

part23: relative distribution of shell amount in (1stshell:2ndshell) (0 . . .∞) p12

d2 plus: extra radius of first shell2 (compared to compact) d+
1

d3 plus: extra radius of second shell3 (compared to compact) d+
2

sigma1: core smearing σc
sigma2: smearing of 1st shell2 σ1

sigma3: smearing of 2nd shell3 σ2

partstar: relative distribution of parbolic:starlike profile in shell3 xstar; one usu-
ally puts a very high value in order to consider only a star-like profile.

gamma: for star-like profile the exponent is γ = 4/3 and for a constant profile γ = 0
lparabol: thickness of parabolic brush Lp (must fit in shell3!)
f brush: scattering length density correction factor brush
f core: scattering length density correction factor core
rhosolv: scattering length density of solvent bsolv
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7.3. Spherical core-shell structures with smooth or fuzzy interfaces

This plugin contains a collection of form factor for spherical core-shell structure with
a smooth interface. The smooth interfaces are described by radial profiles of a form
which are analytical integrable, i.e. for which the following integral for calculating the
scattering amplitude Ai(Q) of the ith shell has an analytical solution.

Ai(Q) =

Ri+ti∫
Ri

ηi(r) 4πr2 sin (Qr)

Qr
dr (7.43)

Radial profiles for which the this integral can be solved are

ηa,i(r) = (ηout,i − ηin,i)
r −R
t

+ ηin,i (7.44a)

ηb,i(r) = (ηout,i − ηin,i)
(
r −R
t

)2

+ ηin,i (7.44b)

ηc,i(r) = (ηout,i − ηin,i) exp

(
r −R
t

)
+ ηin,i (7.44c)

ηd,i(r) = (7.44d)

ηe,i(r) = (7.44e)

ηf,i(r) = (7.44f)

(7.44g)
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7.3.1. Fuzzy Sphere.

Figure 7.12. radial profile of a fuzzy sphere model

This model can be used to calculate the scattering from spherical particles with a
”fuzzy” interface [94]. The fuzzy interface is obtained by convoluting the radial profile
of a hard sphere with a Gaussian function.

ηFuzzySph (|r|) = (ηHS ? ηGauss) (r)

=

∫
R3

ηHS(τ )ηGauss(r− τ )dτ (7.45)

with

ηHS (|r|) =

{
(ηsph − ηsol) for |r| ≤ R

0 for |r| > R
(7.46a)

ηGauss (|r|) =
1

2
√

2 π3/2|σ|3
exp

[
− |r|

2

2|σ|2

]
(7.46b)

The convolution has to be done in R3. As the hard sphere and Gaussian functions are
radial symmetric also the profile of the fuzzy sphere only depends on |r|. By defining the
interface via a convolution the form factor can be easily calculated because the Fourier
transform of a convolution is the pointwise product of the Fourier transforms according
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to the convolution theorem, i.e.

F (Q) = F [ηFuzzySph(r)]

= F [(ηHS ? ηGauss) (r)] = F [ηHS(r)]F [ηGauss(r)]

=

∞∫
0

ηHS(r) 4πr2 sin (Qr)

Qr
dr

∞∫
0

ηGauss(r) 4πr2 sin (Qr)

Qr
dr

= (ηsph − ηsol) 4πR3 sin (QR)−QR cos (QR)

(QR)3 e[−
1
2
σ2Q2]

(7.47)

Instead of calculating the convolution integral one also can get the radial profile of
the fuzzy interface by the inverse Fourier transformation of the scattering amplitude

ηFuzzySph(r) =

∞∫
0

1

(2π)3F (Q)4πQ2 sin (Qr)

Qr
dQ (7.48)

ηFuzzySph(r) = (ηsph − ηsol)
(
e−

(r+R)2

2σ2 − e−
(r−R)2

2σ2

)
σ

√
2π r

+
1

2
erf

[
r +R√

2 |σ|

]
− 1

2
erf

[
r −R√

2 |σ|

] (7.49)

Finally the scattering intensity is given by

IFuzzySph(Q) = F 2(Q) =[
(ηsph − ηsol) 4πR3 sin (QR)−QR cos (QR)

(QR)3 e[−
1
2
σ2Q2]

]2

(7.50)

The intensity IFuzzySph(Q) and also the scattering length profile ηFuzzySph(r) are nor-
malized so that

lim
Q→∞

IFuzzySph(Q) =

(
4

3
πR3

)2

∞∫
0

4πr2 ηFuzzySph(r) dr =
4

3
πR3

R = radius of the fuzzy sphere

σ = thickness of the fuzzy shell

ηsph : scattering length density of sphere

ηsol : scattering length density of the solvent

(7.51)



348 7. PLUGIN FUNCTIONS

Input Parameters for model FuzzySphere and radial profile of FuzzySphere:

R: radius of the fuzzy sphere R
sigma: thickness of the fuzzy shell σ
eta sph: scattering length density of sphere ηsph

eta sol: scattering length density of solvent ηsol

Note:

• This form factor is only defined for positive radii R > 0.
• For σ = 0 the limiting case of a simple hard sphere form factor is used.
• In addition, scattering contributions arising from fluctuations of the microgel

network are often included in this model expression as a Lorentzian function

Ifluct(Q) =
Ifluct(0)

1 + ξ2Q2
(7.52)

so that

I(Q) = IFuzzySph(Q) + Ifluct(Q) (7.53)

where Ifluct(0) is the Q = 0 limiting intensity and ξ represents the correlation
length of the fluctuations, which can be considered to be related to the blob
or mesh size. It should be noted that the Lorentzian describes the ensemble
average correlations in the polymer network.

Figure 7.13. Scattering intensity of a fuzzy sphere. The scattering in-
tensity has been calculated for a core radius R = 10, a scattering length
density of the FuzzySphere of ηSph = 1, a scattering length density of the
solvent ηsol = 1, and several widths of the ”fuzzy” shell
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(a) radial profile of a sphere with a parabolic
interface

(b) radial profile of a spherical shell with par-
abolic interfaces

Figure 7.14. .....

7.3.2. CoreShellMicrogel. This model can be used to calculate the scattering
from spherical particles with a parabolic ”fuzzy” interface [8, 7, 9]. The radial profile
is given by

ρ(r, R, σ) =


1 for r ≤ R− σ
1− 1

2
((r−R)+σ)2

σ2 for R− σ < r ≤ R
1
2

((R−r)+σ)2

σ2 for R < r ≤ R + σ

0 for r >≤ R + σ

(7.54)

where R = W +σ. For such a radial profile the Fourier-transformation can be calculated
analytically as

F (Q,R, σ) = F [ρ(r, R, σ)] =

4π

((
R

σ2
+

1

σ

)
cos(q(R + σ))

q4
+

(
R

σ2
− 1

σ

)
cos(q(R− σ))

q4

− 3
sin(q(R + σ))

q5σ2
− 3

sin(q(R− σ))

q5σ2
− 6

sin(qR)

q5σ2
− 2R

cos(qR)

q4σ2

)
(7.55)

The last term in the brackets needed to be corrected compared to the papers mentioned
above due to a typo in the original papers. The radial scattering length density profile
of a fuzzy core shell like in Fig. 7.14b can be obtained by

ηcore,sh(r,Wcore, σcore, D, σsh,in,Wsh, σsh,out) = ηsol + (ηshell − ηsol)ρ(r, Rout, σout)

+ (ηshell − ηsol)ρ(r, Rsh,in, σsh,in) + (ηcore − ηsol)ρ(r, Rcore, σcore) (7.56)
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with

Rcore = Wcore + σcore (7.57a)

Rsh,in = Rcore +D (7.57b)

Rout = Rsh,in + σsh,in +Wsh + σsh,out (7.57c)

In the same way also the scattering amplitude Fcore,sh(Q, · · · ) and the scattering intensity

Icore,sh(Q, · · · ) = |Fcore,sh(Q, · · · )|2 can be calculated

Fcore,sh(Q,Wcore, σcore, D, σsh,in,Wsh, σsh,out) = (ηshell − ηsol)F (Q,Rout, σout)

+ (ηshell − ηsol)F (Q,Rsh,in, σsh,in) + (ηcore − ηsol)F (Q,Rcore, σcore) (7.58a)

Icore,sh(Q,Wcore, σcore, D, σsh,in,Wsh, σsh,out) = |Fcore,sh(Q, · · · )|2 (7.58b)

Input parameters for ”CoreShellMicrogel” and ”radial profile of

CoreShellMicrogel”:

W core: radius of center parts of core Wcore with homogeneous scattering length
density

sigma core: interface half width of the core σcore

W shell: width of center parts of shell Wsh with homogeneous scattering length
density

sigma sh,in: half width of the inner interface of shell σsh,in

D: distance D between interface of core and in interface of shell
sigma out: half width of the outer surface profile σout

eta core: scattering length density of homogeneous core part ηcore

eta shell: scattering length density of homogeneous shell part ηshell

eta sol: scattering length density of solvent ηsol

Note

• If one like to simulate a simple step profile one should set D = 0 and σcore =
σsh,in. The last equality in case of fitting this parameter can be simply obtained
by a global parameter under fitting multiple data sets.
• Instead of using the radii in eq. 7.57 as input parameters the thickness of the

homogeneous parts of the core and the shell have been used to avoid a problems
(negative dimensions) by applying an integration over a size distribution starting
from 0 on the radii.



7.3. SPHERICAL CORE-SHELL STRUCTURES WITH SMOOTH OR FUZZY INTERFACES 351

(a) Some radial profiles of spheres with a par-
abolic interfaces which have been used to cal-
culate the scattering curve in Fig. (b).

(b) Scattering curves of the radial profiles

shown in Fig. (a).

Figure 7.15. The profiles and scattering curves hve been calculated
with the plugin functions ”CoreShellMicrogel” and ”Radial Profile

of CoreShellMicrogel”.
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7.3.2.1. Spherical shell with linear varying contrast profile (LinShell).

Figure 7.16. Radial profile for calculating the form factor of a spherical
shell with a core radius R and a shell thickness of ∆R and a linear varying
contrast profile.

Form factor of a spherical shell with a core radius R and a shell thickness of ∆R.
Here a linear contrast profile within the shell has been assumed.

∆η(r) =


ηc for r < R

mr + b for r ∈ [R,R + ∆R]

ηsol for r > R + ∆R

(7.59)

m = (ηsh out − ηsh in)/∆R (7.60)

b = −mR + ηsh in (7.61)

ηsh in = (1− xin,sol) ηsh + xin,sol ηsol − ηsol (7.62)

: scattering length density at R

ηsh out = (1− xout,sol) ηsh + xout,sol ηsol − ηsol (7.63)

: scattering length density at R + ∆R

ηsh : scattering length density of pure shell material

ηc : scattering length density of core
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Fsph(A, x) =
4

3
πx3 3

sin(A)− A cos(A)

A3
(7.64)

Fshlin(A, x) = 4πx4 2 cos(A) + 2A sin(A)− A2 cos(A)

A4
(7.65)

ILinShell =
[

(ηc − ηsol − b)Fsph(QR,R)

−mFshlin(QR,R) (7.66)

+mFshlin (Q(R + ∆R), R + ∆R)

+ bFsph (Q(R + ∆R), R + ∆R)
]2

Input Parameters for model LinShell and radial profile of LinShell:

R: radius of core R
dR: thickness of the shell ∆R
eta c: scattering length density ηc

eta sh: scattering length density of non-swollen shell ηsh

x in: amount of solvent xin,sol on core-shell interface at R
x out: amount of solvent xout,sol on shell-solvent interface at R + ∆R
eta sol: scattering length density of solvent ηsol

Note:

• xin,sol and xout,sol are only physical for values between 0 and 1.



354 7. PLUGIN FUNCTIONS

(a) Some radial profiles of spheres with a linear
interface profiles due to penetration of solvent
into the shell which have been used to calcu-
late the scattering curve in Fig. (b).

(b) Scattering curves of the radial profiles

shown in Fig. (a).

Figure 7.17. Scattering intensity of a spherical shell with an linear shell
profile. The scattering intensity has been calculated with a lognormal size
distribution for the core radius Rc.
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7.3.2.2. LinShell2.

Figure 7.18. Radial profile for calculating the form factor of a spherical
shell with a total radius Rtot, a shell thickness of ∆R, and a linear varying
contrast profile.

Form factor of a spherical shell with a total radius Rtot and a shell thickness of ∆R.
The definition are the same than for LinShell except that instead of the core radius
R now the total radius Rtot is used to parameterize the form factor. The parameter
definitions are the following:

R =

{
Rtot −∆R for Rtot > ∆R

0 otherwise
(7.67)

∆η(r) =


ηc for r < R

mr + b for r ∈ [R,Rtot]

ηsol for r > Rtot

(7.68)

with

m = (ηsh out − ηsh in)/∆R (7.69)

b = −mR + ηsh in (7.70)
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and

ηsh in = (1− xin,sol) ηsh + xin,sol ηsol (7.71)

: scattering length density at R

ηsh out = (1− xout,sol) ηsh + xout,sol ηsol (7.72)

: scattering length density at Rtot = R + ∆R

ηsh : scattering length density of pure shell material

ηc : scattering length density of core

xin,sol : amount of solvent at R

xout,sol : amount of solvent at Rtot = R + ∆R

Fsph(A, x) =
4

3
πx3 3

sin(A)− A cos(A)

A3
(7.73)

Fshlin(A, x) = 4πx4 2 cos(A) + 2A sin(A)− A2 cos(A)

A4
(7.74)

ILinShell2 =
[

(ηc − ηsol − b)Fsph(QR,R)

−mFshlin(QR,R) (7.75)

+mFshlin (QRtot, Rtot)

+ bFsph (QRtot, Rtot)
]2

Input Parameters for model LinShell2 and radial profile of LinShell2:

Rtot: total overall radius Rtot

dR: thickness of the shell ∆R
eta c: scattering length density ηc

eta sh: scattering length density of non-swollen shell ηsh

x in: amount of solvent xin,sol on core-shell interface at R (xin,sol ∈ [0; 1])
x out: amount of solvent xout,sol on shell-solvent interface at R + ∆R (xout,sol ∈

[0; 1]).
eta s: scattering length density of solvent ηsol

Note:

• xin,sol and xout,sol are only physical for values between 0 and 1.
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7.3.2.3. ExpShell.

Figure 7.19. Radial profile for calculating the form factor of a spherical
shell with a core radius Rc and a shell thickness of ∆R and a exponentially
varying contrast profile. The profile shape can be varied by the parameter
α describing the penetration of the solvent into the shell. A value of α = 0
means linear profile and is equivalent to LinShell and LinShell2. For
α > 0 the solvent penetrates further into the shell and for α < 0 less.

ηExpShell(r, Rc,∆R,α, φin, φout) =


ηc r ≤ Rc

ηexp( r−Rc
∆R

) Rc < r < Rc + ∆R

ηsol r > Rc + ∆R

(7.76)

ηexp(x) =

{
ηsh,in + [ηsh,out − ηsh,in]x exp ([1− x]α) α < 0

[ηsh,in − ηsh,out] [1− x] exp (−xα) + ηsh,out α ≥ 0
(7.77)

ηsh,in = [φin ηsol + (1− φin) ηsh] (7.78)

ηsh,out = [φout ηsol + (1− φout) ηsh] (7.79)

The scattering intensity for the radial symmetric scattering length density profile
ηExpShell(r) can be calculated analytical. The integral needed to be solved for that is

IExpShell(Q) =

∞∫
0

4πr2 sinQr

Qr
ηExpShell(r) dr (7.80)
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Rc = core radius

∆R = shell thickness

ηsh,in = (1− φin,sol) ηsh + φin,sol ηsol (7.81)

: scattering length density at Rc

ηsh,out = (1− φout,sol) ηsh + φout,sol ηsol (7.82)

: scattering length density at Rc + ∆R

ηsh : scattering length density of pure shell material

ηc : scattering length density of core

φin : amount of solvent at Rc

φout : amount of solvent at Rc + ∆R

α : parameter for exponential diffuse profile of the shell (7.83)

Input Parameters for model ExpShell:

R core: radius of core Rc

DR: thickness of the shell ∆R
eta core: scattering length density ηc

eta shell: scattering length density of non-swollen shell ηsh

x in sol: amount of solvent φin on core-shell interface at r = R
x out sol: amount of solvent φout on shell-solvent interface at r = R + ∆R
alpha: a parameter (α) which describes the penetration profile of the solvent into

the shell. A value of α = 0 means linear profile and is equivalent to LinShell

and LinShell2. For α > 0 the solvent penetrates further into the shell and for
α < 0 less.

eta solvent: scattering length density of solvent ηsol

Note:

• φin and φout are only physical for values between 0 and 1.
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(a) Some radial profiles of spheres with a ex-
ponential interfaces which have been used to
calculate the scattering curve in Fig. (b).

(b) Scattering curves of the radial profiles

shown in Fig. (a).

Figure 7.20. Scattering intensity of a spherical shell with an exponential
shell profile. The scattering intensity has been calculated with a lognormal
[LogNorm(N = 1, σ = 0.05, p = 1, R = 30)] size distribution for the core
radius Rc. The scattering length density of the core ηc and the solvent ηsol

are set to 0, ηsh = 1, φin = 0, φout = 1, and ∆R = 10.
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7.4. Ferrofluids
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7.5. LogNorm fp

The LogNorm distribution is a continuous distribuion in which the logarithm of a
variable has a normal distribution.

LogNorm(x,N, σ, p, µ) =
N

cLN

1

xp
exp

(
− ln(x/µ)2

2σ2

)
(7.84a)

cLN =
√

2π σ µ1−p exp

(
(1− p)2σ

2

2

)
(7.84b)

where σ is the width parameter, p a shape parameter, µ is the location parameter. cLN is
choosen so that

∫∞
0

LogNorm(x, µ, σ, p) dR = N The mode of the distribution is defined
as

xmode = µe−pσ
2

(7.85)

and the nth moment 〈Xn〉 of the LogNorm distribution as

〈Xn〉 =

∫
Xn LogNorm(X) dX∫

LogNorm(X) dX
= µn e

1
2
σ2n(2−2p+n). (7.86)

Instead of using the parameter N (particle number density) another Log-Normal
size distribution namely LogNorm fp with the volume fraction fp as a parameter has
been implemented. Using the volume fraction as a scaling parameter requires that the
intensity is given in units of cm−1 and the scattering vector in nm−1. Furthermore the
scattering contrast needs to be supplied in units of cm−2. More details about absolute
intensity can be found in chapter 8. The volume fraction fp can be obtained from the
LogNorm-distribution (eq. 7.84b) by integrating over the particle volume VP . In case of
spheres we get

fp = 1021

∞∫
0

LogNorm(R,N, σ, p, µ)VP (R) dR (7.87)

= 1021

∞∫
0

LogNorm(R,N, σ, p, µ)
4

3
πR3 dR = 1021N

4

3
π〈X3〉. (7.88)

The scaling factor 1021 depends on the actual units. More details are given in section
8.4.

For other shapes than spheres the corresponding volume of the object has to be used
in eq. 7.89. In case of cylinders the volume is given by Vcyl = πR2L. Depending whether
the radius R or the cylinder length L has a size distribution the volume fraction fp is



362 7. PLUGIN FUNCTIONS

calculated differently namely in case for a radius distribution by

fp = 1021

∞∫
0

LogNorm(R)Vcyl(R,L) dR (7.89)

= 1021

∞∫
0

LogNorm(R)πR2LdR = 1021NπL〈X2〉 (7.90)

and in case of a length distribution by

fp = 1021

∞∫
0

LogNorm(L)πR2LdL = 1021NπR2〈X〉. (7.91)

As the cylinder volume depends on R2 and L either the second or the first moment of
the distribution function is involved in calculating the volume fraction depending which
parameter has a distribution. For a spherical shell a sum of different moments has to be
used as listed in table 1.
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Table 1. The number density N expressed in terms of volume fraction
fp and moments 〈Xn〉 of the distribution function for some particle shapes
and different parameters having a distribution. The factor 1021 is needed
due to unit conversion. It is assumed that the radius is given in nm, the
intensity in cm−1 and the scattering length densities in cm−2.





CHAPTER 8

Absolute intensities, moments and volume fractions

8.1. Fitting absolute intensities

Absolute intensities in the simulation can be obtained by using proper units for the
scattering vector Q, the size dimensions of the scatterer, the scattering length densities
etc. In the following a few example are discussed for absolute calibrated data sets.
One question which is asked quite frequently is ”What is the meaning of N in the size
distribution and what are its units?”. The answer is normally ”That depends on the
units of your data you are fitting and the units of your scattering length densities”. In
the following a few explanations will be given to clarify this in some more detail.

Let us consider first the scattering intensity of a single sphere. The form factor of a
sphere is given by eq. 3.1a as

ISphere(Q,R,∆η) =

[
4

3
πR3∆η 3

sinQR−QR cosQR

(QR)3

]2

(8.1)

The radius R and the scattering vector Q have reciprocal units, i.e. if Q is given in 1/nm
the radius R has a unit of nm. The other variable in the form factor is the scattering
length density contrast ∆η between sphere and surrounding matrix or solvent. The unit
of the scattering length density is length/volume and has therefore a unit 1/cm2 or some

other sites are using units of 1/Å
2
. The difference is only a constant factor of

∆η
1

cm
= 1016∆η

1

Å
. (8.2)

The overall unit of the scattering intensity (differential cross-section) of a single sphere
is therefore

[ISphere(Q,R,∆η)] = [R]6 [∆η]2 =
nm6

cm4
= 10−42cm2 (8.3)

for the case that [R] = nm and [∆η] = cm−2. The unit for the scattering cross-section

of a single sphere with [R] = Å and [∆η] = Å
−2

is than

[ISphere(Q,R,∆η)] = [R]6 [∆η]2 =
Å

6

Å
4 = Å

2
= 10−16cm2, (8.4)

respectively. The scattering cross-section of a single scatterer is calculated by SASfit if
one chooses in the tab for distribution functions the probability functions Monodisperse.

Differential cross-section have a unit of an area[
dΣ

dΩ
(Q)

]
= cm2. (8.5)
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Many instruments deliver with their data reduction software a cross-section normalized
by the sample volume so that the unit is in reciprocal length:[

dσ

dΩ
(Q)

]
=

1

[V ]

[
dΣ

dΩ
(Q)

]
=

1

cm
. (8.6)

For fitting a form factor to experimental data one needs next to the size parameter
also a scaling parameter. For the simplest case this is done by choosing as a distribution
function Delta. Delta simply multiplies a constant value N to the form factor. The
meaning and the unit of N now depends on the unit of the cross-section, wether it is
normalized or not normalized on the sample volume. SASfit calculates in the case of a
form factor of Sphere with Delta as a distribution function

ISASfit = N × ISphere(Q,R,∆η). (8.7)

Fitting N to a data set, which is given in units of 1/cm and where [Q] = nm−1, [R] = nm
and [∆η] = cm−2 would mean that N has the unit

[N ] =

[
dσ
dΩ

(Q)
]

[ISphere(Q,R,∆η)(Q)]
=

1
cm

10−42cm2
= 1042cm−3. (8.8)

One therefore needs to multiply the value N obtained by SASfit with 1042 to get the
number density of scatterers in units of cm−3.

Let us now consider the simplest case of spheres with a size distribution and no
structure factor, which are fitted to experimental data. All the size distribution have a
scaling parameter N . The units of the parameter N in the size distribution is the same
than for Delta. The size distribution n(x) are implemented as distribution function
n(x) = Np(x) with p(x) being a probability function. In case of polydisperse spheres
SASfit calculates the integral

ISASfit (Q) =

∞∫
0

n(R) ISphere(Q,R,∆η) dR (8.9)

= N

∞∫
0

p(R) ISphere(Q,R,∆η) dR (8.10)

The probability function p(x) is normalized to
∞∫

0

p(x) dx = 1, (8.11)

so that the parameter N has like for the Delta-distribution the unit [N ] = 1042cm−3 if
the data set is given in units of 1/cm and [Q] = nm−1, [R] = nm and [∆η] = cm−2.

Most of the form factor are implemented in a way that they return the scattering
cross-section of a single object like the example of a sphere above, but a few are not,
like for example the standard form of a gaussian chain Gauss. In this particular case
two other versions Gauss2 and Gauss3 with different parameterizations of the forward
scattering of a single gaussian chain are available. However, there are some form factors,
which have been implemented according to the literature but which are normalized
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differently. This has to be checked before the parameter N in the size distribution is
interpreted in terms of number density of scatterers.

8.2. Contrast - Concentration - Forward Scattering - Particle Volume -
Absolute Scale

A frequently asked question is if the scattering intensity is consistent with the con-
centration of material in the sample. Especially people working with micellar solution,
star polymers, but also proteins, etc. want to cross-check the absolute intensity with the
known concentration. In the dilute case the differential cross-section is simply N times
the cross-section of an individual scatterer

dσ

dΩ
(Q) =

N

Vtot

P (Q) (8.12)

N is number of particles/molecules/proteins in the illuminated volume, Vtot the illumi-
nated sample volume, n = N/Vtot the particle number density, and P (Q) the scattering
cross-section of a single particle. P (Q) has the dimension cm2, N/Vtot the dimension
cm−3, and dσ

dΩ
(Q) the dimension cm−1. Eq. 8.14 can also be expressed in terms of con-

centration c in units of g/cm2

c = n mmol = n Mru = n
MrMu

NA

=
N

Vtot

MrMu

NA

(8.13)

so that

dσ

dΩ
(Q) = c

NA

MrMu

P (Q) (8.14)

Mr is the relative molar mass of the particle 1 (Molecular weight (M.W.) and formula
weight (F.W.) are older terms) which is a dimensionless quantity (i.e., a pure number,
without units). To get units in g/mol the relative molar mass needs to be multiplied by
the molar mass constant Mu. The value of the molar mass constant Mu is defined to be 1
g/mol in SI units. The molar mass constant is important in writing dimensionally correct
equations. It is common to see phrases such as ”The molar mass of an element is the
atomic weight in grams per mole.” However molecular or atomic weight are dimensionless
quantities, and cannot take the units of grams per mole. Formally, the operation is
the multiplication by a constant which has the value 1 g/mol, that is the molar mass
constant2. The molecule mass mm in units of g is mm = MrMu/NA.

1 Definition of relative atomic mass and relative molecular mass can be found on the url-address
http://physics.nist.gov/Pubs/SP811/sec08.html

Relative atomic mass (formerly atomic weight): ratio of the average mass per atom of
an element to 1/12 of the mass of the atom of the nuclide 12C.

Relative molecular mass (formerly molecular weight): ratio of the average mass per
molecule or specified entity of a substance to 1/12 of the mass of an atom of the nuclide
12C.

2Definition of unified atomic mass unit: 1u = mu = m
(
12C
)
/12 = 1Mu/NA =

1 (g/mol) /
(
6.02214129× 1023mol−1

)
= 1.660538921× 10−24g
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Now we need to look on the forward scattering P (Q=0) of a single parti-
cle/protein/polymer chain. For a simple particle like a sphere, the forward scattering is
given by

P (Q=0) = (ηsol − ηsp)2 V 2
sp (8.15)

where (ηsol − ηsp) is the scattering contrast between spherical particle and solvent and
Vsp the volume of a single sphere. In case of a spherical particle the boundary between
particle and solvent is well defined and therefore also the volume of the particle as it
has a sharp interface. The scattering contrast of a spherical particle can also be written
in terms of the overall scattering length of the sphere bsp, i.e. the sum of the scattering
length of all atoms forming the sphere, the volume of the sphere and the scattering
length density of the solvent. The volume of the sphere can be calculated from its mass
msp or relative molar mass Mr,sp and its density ρsp.

(ηsol − ηsp) =

(
ηsol −

bsp

Vsp

)
=

(
ηsol −

bspρsp

msp

)
=

(
ηsol −

bspρspNA

Mr,spMu

)
(8.16)

But what about the forward scattering of a gaussian polymer coil? A polymer does not
has a sharp boundary to the solvent. Polymer and solvent can penetrate each other.
To determine the polymer volume one would need a detailed model for the polymer
molecule and its interaction with solvent molecules. As a first approximation the volume
of a polymer molecule can be obtained by Vpolym =

ρpolym

mpolym
. For a polymer coil with a

relative molar mass Mr,polym the forward scattering in a solvent is given by

P (Q=0) =

(
Mr,polymMu

ρpolymNA

)2(
ηsol −

bpolymρpolymNA

Mr,polymMu

)2

(8.17)

The volume of a polymer molecule

Vpolym =
Mr,polymMu

ρpolymNA

is the volume occupied by single polymer chain in the solvent or in other word the
amount of solvent volume displaced by one polymer chain. For the forward scattering
it does not matter, if the coil is collapsed or swollen. As long as the scattering length
density of the solvent inside the swollen polymer coil is the same than in the bulk and
the molecular volume of the polymer chain does not change with the solvent quality
the forward scattering does not depend on the conformation of the polymer. Sometimes
the relative molar mass of a polymer is given in degree of polymerization p and relative
molar mass of the monomer Mr,m. In this case and assuming that the mass densities of
polymer and monomer are the same the forward scattering is given by

P (Q=0) =

(
p Mr,mMu

ρmNA

)2(
ηsol −

bmρmNA

Mr,mMu

)2

=

(
p Mr,mMu

ρmNA

)2(
ηsol −

bmρmNA

Mr,mMu

)2

(8.18)
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Let us now come back to the measured differential cross-section dσ
dΩ

(Q). For Q = 0 we
get

dσ

dΩ
(Q=0) =

N

Vtot

P (Q=0) = c
NA

Mr,GaussMu

P (Q=0) (8.19)

= c
NA

p Mr,mMu

(
p Mr,mMu

ρmNA

)2(
ηsol −

bmρmNA

Mr,mMu

)2

(8.20)

= c
p Mr,mMu

NAρ2
m

(
ηsol −

bmρmNA

Mr,mMu

)2

(8.21)

The last equation says, that the forward scattering of a solution of dilute non-interacting
polymer molecules consisting of p monomer units depends linearly on the number of
monomer units p in the polymer. Even though the scattering of a single polymer molecule
depends quadratically on on the number of monomer units. The reason is simply that
the larger the degree of polymerization the lower the number density of molecules in the
solution as we assume a constant concentration, i.e. c ∝ pn and therefore dσ

dΩ
(Q=0) ∝

p2n.

8.3. Moments of scattering curves and size distribution

The relevance of moments both for scattering curves as well as size distributions has
been discussed in several publications [17, 90, 18, 102, 65, 37].

Moments 〈xm〉 of any order m of a function f(x) are defined by integrating f(x) with
a suitable power of x over its domain [a, b]

〈xm〉 =

b∫
a

f(x)xmdx (8.22)

The different moments of the scattering curve together with the forward scattering
I(0) and the Porod constant can be used to calculate easily several structural parameters
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of the scatterers.

Q̃inv =

∞∫
0

Q2I(Q)dQ (scattering invariant) (8.23a)

S

V
=

π

Q̃inv

lim
Q→∞

{
Q4I(Q)

}
(specific surface) (8.23b)

〈RG〉2 = 3

(
− lim

Q→0

{
d[ln I(Q)]

d(Q2)

})
(squared Guinier radius) (8.23c)

li = 〈d〉 =
4

π

∫∞
0
Q2I(Q)dQ

lim
Q→∞

{
Q4I(Q)

} (average intersection length) (8.23d)

lc = 〈l〉 =
π

Q̃inv

∞∫
0

QI(Q)dQ (correlation length) (8.23e)

Ac = 〈A〉 =
2π

Q̃inv

∞∫
0

I(Q)dQ (correlation surface) (8.23f)

VP = 〈V 〉 =
2π2

Q̃inv

I(0) (correlation volume, Porod volume) (8.23g)

These structural parameters are calculated by SASfit via the menu [Calc|integral

parameters...].
On the other side the structural parameters from above can depend on specific mo-

ments of the size distribution in the case the scattering objects are spheres. The m-th
moment 〈xm〉 of a size distribution n(R) is given by

〈Rm〉 =

∞∫
0

n(R)RmdR

∞∫
0

n(R)dR

(8.24)

From these moments the following integral structural parameters in case of polydis-
perse spheres can be calculated and are listed together with a hypothetical radius of
monodisperse spheres having the same structural parameter.

intersection length li:

li =
〈R3〉
〈R2〉

and Rli =
3

4
li

correlation length lc:

lc =
〈R4〉
〈R3〉

and Rlc =
2

3
lc
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(a) GUI for defining fit
ranges for Porod and
Guinier approximations

(b) Tabbed menu displaying the integral structural param-
eters calculated via the different moments of the scattering
curve the Porod and Guinier extrapolations to Q→ 0 and
Q→∞.

Figure 8.1. Menu and tabbed window for integral structural parameters.
SASfit also supports analysis of series of data, whereby the structural
parameters are stored in CSV format readable by many software packages
in a separate file for further analysis.

Guinier radius RG:

RG =

√
〈R8〉
〈R6〉

and RRG =

√
5

3
RG

correlation cross section Ac:

Ac =
4π

5

〈R5〉
〈R3〉

and RAc =

√
5

4π
Ac

Porod Radius RVP :

VP =
4π

3

〈R6〉
〈R3〉

and RVP =
3

√
3

4π
VP

Fig. 8.2 shows the SASfit menue displaying these values for each scattering contribu-
tion having a size distribution and also for the sum of all scattering contributions. Next
to the integral structural parameters also the different moments of the size distribution
up the the 8th moment are supplied.
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Figure 8.2. Menu displaying the different moments of a size distribution.
At the moment these values are only calculated for single data sets but
not yet for multiple data sets

8.4. Volume fractions

Having measured SAS-data versus [Q] = nm−1 in absolute scale (1/cm) and knowing
the scattering contrast also in absolute scale (1/cm2) one can get the number density
of particles. However, in general the volume fraction is known by other means but not
the number density. The volume fraction can be calculated from the size distribution
for some simple geometric shapes of the particles.

Let us first consider the case of simple spheres (Sphere) with a size distribution over
there radii. The size distribution can be interpreted as a number density distribution
function. The volume fraction fp of the spheres can be easily calculated by

fp =

∞∫
0

n(R)
4

3
πR3 dR =

∞∫
0

Np(R)
4

3
πR3 dR = N

4

3
π〈R3〉 (8.25)

where 〈R3〉 is the third moment of the size distribution. The different moments of a
size distribution can be calculated analytically for some special cases like the lognor-
mal distribution. However, SASfit calculates the moments and displays them on the
menu [calc|single data single]. Up to the 8th-moment of a distribution function
is displayed in the menu tab moments of analytical size distrib. like in Fig. 8.2
together with some other parameters defined in section 8.3. To compute the volume
fraction fp, which is a dimensionless parameter, one has to use the proper units for
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N and 〈R3〉. 〈R3〉 has here units of [〈R3〉] = nm3 = 10−21cm3 and N is in units
of [N ] = 1042cm−3. The volume fraction fp can as an example be computed for
N = 8.55241× 10−28 and 〈R3〉 = 5.6619× 103 as

fp = 1042 × 8.55241× 10−28 4

3
π 5.6619× 103 10−21 = 0.020283. (8.26)

The numbers for N and 〈R3〉 can be directly taken from the SASfit gui.
Let us now consider the case of cylinders with a circular cross-section with radius R

and length L. We will have a look on the two cases of having either a distribution in
the radius R or a distribution in the length L. The volume of a cylinder Vcyl is given by

Vcyl(R,L) = πR2L (8.27)

To calculate the volume fraction from the size distribution we need to integrate over the
particle volume. The integration is done either over the radius dR

fp =

∞∫
0

n(R)Vcyl(R,L) dR =

∞∫
0

Np(R)πR2LdR = NLπ〈R2〉 (8.28)

or over the cylinder length dL

fp =

∞∫
0

n(L)Vcyl(R,L) dL =

∞∫
0

Np(R)πR2LdL = NR2π〈L〉 (8.29)

depending if we have a distribution over the radius R or the length L. In both cases the
volume fraction can be expressed in terms of moments of the size distribution supplied
by SASfit. In the first case it can be expresses by the second moment 〈R2〉 of the
cylinder radius and in the second case by the first moment 〈L〉 of the cylinder length,
i.e. the mean cylinder length. The required moments are displayed in SASfit in the
menu shown in Fig. 8.2. Also here one has to take care using proper units, but this is
done equivalently to the first example of a sphere in eq. 8.26.

The three examples above show that the volume fraction fp of scatterers can be
calculated in many cases via the moments of the size distribution and for simple cases all
necessary parameters are supplied in the SASfit menu interface. The volume fraction fp

in Fig. 8.2 is numerically calculated from the size distribution. For some specific other
form factor and the special case of a LogNorm distribution a plugin size distribution
named LogNorm fp described in section 7.5 has been implemented. Calculating volume
fractions for any size distribution and for any form factor is not easy to implement. It
would require quite some knowledge about the form factor and how exactly the volume
fraction is defined. The plugin LogNorm fp distinguish between volume fraction of a core
only, a volume fraction of a core together with a shell and a volume fraction of a shell only.
For the general case one also needs to know which size parameter of the form factor has
a distribution. This already shows that the user has to supply additional information.
For the calculation a volume function has to be associated to each form factor. If this
is not the case the SASfit routine returns 0. For those function a volume function is
associated to the form factor SASfit calculates numerically the volume fraction for any
size distribution by integration. The plugin function LogNorm fp on the other side has a
lognormal distribution implemented and the information about the form factor and the



374 8. ABSOLUTE INTENSITIES, MOMENTS AND VOLUME FRACTIONS

size parameter of the form factor having a distribution has to be given by the user via
an input value called shape. Only a very limited number of form factor can be selected
by this parameter. For other form factors the plugin needs to be extended or an routine
calculating the volume for the specific form factor needs to be implemented.



CHAPTER 9

Basic Analysis of Dynamic Light Scattering Data

In a typical dynamic light scattering (DLS) or photo correlation scattering (PCS)
experiment, the autocorrelation function G(2)(τ) of the intensity scattered by dispersed
particles is determined as a function of the delay τ . G(2)(τ) is related to the modulus of
the normalized field autocorrelation function g1(τ) by a Siegert relationship

G(2)(τ) = Ag2
1(τ) +B. (9.1)

Here B is a background term often designated as the baseline and A can be considered
as another instrumental factor. The time dependence of g1(τ) is related to the dynamics
of the dispersed particles. For particles in Brownian motion, the time decay of g1(τ)
is determined by the diffusion coefficient of the dispersed particles. In particular, for
monodisperse samples g1(τ) is an exponentially decaying function:

g1(τ) = exp(−Γτ) (9.2)

or

G(2)(τ) = A exp(−2Γτ) +B (9.3)

where the decay rate Γ is linked to the particles’ diffusion coefficient D by Γ = DQ2,
where Q is the modulus of the scattering vector

Q =
4πm1

λ0

sin(θ/2) (9.4)

m1 is the refraction index of the solution, λ0 the wavelength in vacuo of the incident light
and θ the scattering angle. At the end the Stokes-Einstein expression for the diffusion
coefficient is used to get an average particle radius RDLS

D =
kT

6πηRDLS

(9.5)

where k is Boltzmann’s constant, T the absolute temperature, η the viscosity of the
dispersion medium and RDLS the particle radius (only valid for noninteracting particles).
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9.1. Cumulant Analysis

The formulas in eq. 9.2 to 9.5 are valid for monodisperse dispersions only. For
polydisperse dispersions the cumulants method of Koppel (1972) is widely used, which
assumes a multi-exponential behaviour so that g1(τ) and G(2)(τ) can be written in a
series expansion as:

g1(τ) = exp

(
−Γ1τ +

Γ2τ
2

2
− Γ3τ

3

6
+ · · ·

)
(9.6)

G(2)(τ) = A exp

(
−2Γ1τ + Γ2τ

2 − Γ3τ
3

3
+ · · ·

)
+B (9.7)

SASfit assumes for the cumulant fit-routine that the function G(2)(τ) is supplied. As
normally no error bar is available from the correlator a robust least square procedure is
implemented.

REFERENCE:
Dennis E. Koppel, Analysis of Macromolecular Polydispersity in Intensity Correlation
Spectroscopy: The Method of Cumulants, The Journal of Chemical Physics, Vol.1, No.
11 (1972), 4815- 4820
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9.2. Double Decay Cumulant Analysis

G(2)(τ) = A
[
p e−2Γa,1 τ+Γa,2 τ2

+ (1− p) e−2Γb,1 τ+Γb,2 τ
2
]

+B (9.8)
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9.3. Fit of Double Stretched Exponentials

G(2)(t) = A

{
p exp

([
t

τ1

]γ1
)

+ (1− p) exp

([
t

τ2

]γ2
)}

+B (9.9)
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9.3.1. The least squares minimiser and the robust least squares procedure.
The function to be minimised is

χ2 =
∑
i

(
ri

∆Ii

)2

where the residual is defined as
ri = Ii − Ii,th.

Here Ii is the intensity correlation function G(2)(ti) at time ti with already subtracted
baseline as received from a correlator, Ii,th is the value of the cumulant fit according to
eq. 9.7 or a double exponential decay according to eq. 9.9. Normally no error values ∆Ii
are supplied from the correlator so that all data points are weighted the same. A robust
fitting with bisquare weights is implemented which uses an iteratively reweighted least
squares algorithm, and follows the procedure:

(1) Fit the model by an unweighted least squares (that is, χ).
(2) Standardize the residuals via ui = ri/(Ks). Here K is a tuning constant equal

to 4.685, and s is the robust variance given by MAD/0.6745, where MAD is
the median absolute deviation of the residuals

MAD =
N∑
i=1

1

N
|Ii,th − Ii|

(3) Compute the robust weights wi as a function of the standardized residuals ui.
The bisquare weights are given by

wi =

{
(1− u2

i )
2 |ui| < 1

0 |ui| ≥ 1

(4) Re-do the fit using the weighted minimiser:

χ2 =
∑
i

wi

(
ri

∆Ii

)2

(5) The fit converges when the MAD changes by no more than the fraction set by
residual_tolerance (which has been chosen to be 10−8). Otherwise, perform
the next iteration of the fitting procedure by returning to the first step.





CHAPTER 10

Scattering Theory

10.1. Scattering Cross-Section

In a scattering experiment one is interested in a detailed analysis of the scattering
pattern as a function of the characteristics of the incident beam. Monochromator and
collimator specify direction and energy of the incident radiation. The radiation interacts
with the sample and receives thereby a momentum transfer ~Q

¯
. By this process the

radiation receives beside a direction change also an energy change. The result is described
with the help of a cross-section.

Figure 10.1. Schematic representation of a scattering process

A detector with an efficiency ε measures for this the number of the scattered neutrons
or photons in a given direction k0+Q. The distance between detector and sample should
be large in comparison to the linear dimension of the detector, so that the solid angle
included by the detector element ∆Ω is small.

If the incident beam has a homogeneous, continuous flow density Φ0 ([Φ0] = neutron
(photons -) per cm2 and second) and if the beam contain N identical particles, then the
counting rate C of the detector is proportional to all these quantities. The proportion-
ality constant is called differential scattering cross-section dσ

dΩ
= C

Φ0 εN ∆Ω
. In the case of

inelastic scattering the counting rate is in a certain interval δE of transferred energy in
addition proportionally to δE. The appropriate proportionality constant is the partial
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(or double) differential scattering cross-section

d2σ

dΩ dE
=

C

Φ0 εN ∆Ω ∆E
=

Number of neutrons (photons), which are scattered per second
into the solid angle dΩ toward φ, θ with an energy between E
and E + dE

NΦ0 dΩ dE

The total differential cross-section is defined as

σt = (total number of scattered neutrons (photons) per sec)/Φ0. (10.1)

The three different cross-section are related to each other by

σt =

∫
dΩ

dσ

dΩ
and

dσ

dΩ
=

∞∫
0

dE
d2σ

dΩ dE
. (10.2)

10.1.1. Scattering of neutrons on atoms. The scattering of neutrons can be
explained by two types of interactions between neutrons and matter; once the strong spin
dependent nuclear forces between nuclei and neutron (interaction range ∼ 10−15m) and
secondly the dipole-dipole interaction between the magnetic moment of the neutron and
that of an unpaired electron, or nuclei accordingly. Both interactions have in common
that their interaction potential V (r

¯
) for r → ∞ decays faster than 1/r. For this kind

of interaction potential the quantum mechanical scattering theory [44] yields as an
asymptotic approximation for the Schrödinger equation of the wave function

ψk
¯0

(r
¯
) −−−→
r→∞

1

(2π)3/2

[
eık¯0r¯ + f(θ, φ)

eık0r

r

]
. (10.3)

For low energy particles and short range potential the partial waves methods yields for
the scattering amplitude f(θ, φ) = −b, whereby the so called scattering length b can be
determined experimentally. Via another Ansatz, the Born approximation, one gets a
series expansion for f(θ, φ). The first term of this series expansion is give by

f (0)(θ, φ) = − mN

2π~2

∫
dr
¯
eıQ¯

rV (r
¯
) , (10.4)

with Q
¯

= k
¯
− k0. A comparison of this result with the partial wave method (f(θ, φ) =

−b), shows that the pseudo potential V (r
¯
) = 2π~2

mN
b δ(r

¯
) (Fermi’s pseudo potential) has

an equivalent solution. For an ensemble of N atoms, e.g. a crystal, the total potential
is in kinematic approximation the sum of the individual potentials

V (r
¯
) =

2π~2

mN

N∑
j=1

bjδ(r
¯
− rj) , (10.5)

whereby r
¯j

describes the position of nuclei j with scattering the length bj and N the
number of scattering atoms. The scattering length bj depends on the element or isotope
which is the scattering center. Furthermore it can depend on the spin state of the
neutron and the nuclei and on unpaired electrons in non fully occupied atomic electron
shells. In the kinematic approximation it is assumed that the intensity of the incoming
beam is identical at each scattering center, i.e. that the scattered intensity does not
attenuate the incoming beam. Furthermore it is assumed that the incoming beam is
only scattered once and multiple scattered can be neglected.
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In the static approximation, i.e. for a scattering process which does not change the
state of the scattering center and therefore is an elastic scattering process, the differential
scattering cross-section can be described in terms of a scattering amplitude f (0)(θ, φ) by

dσ

dΩ
(Q
¯

) =
1

N

∣∣f (0)(θ, φ)
∣∣2 =

1

N

( mN

2π~2

)2
∣∣∣∣∫ dr

¯
eıQ¯

r V (r
¯
)

∣∣∣∣2 . (10.6)

Using Fermi’s pseudo potentials (eq. 10.5) leads to the expression

dσ

dΩ
(Q
¯

) =
1

N

∣∣∣∣∣
N∑
j=1

bj e
ıQ
¯
r
j

∣∣∣∣∣
2

=
1

N

∑
i,j

bi bj e
ıQ
¯
r
i e
−ıQ

¯
r
j (10.7)

Let us now consider a new system of scatterers, which are only different to those
from eq. 10.7 that the scattering length of the nuclei are exchanged. Hereby both the
position and fraction of the scattering length bi are kept the same. For a large number of
scattering centers the average over the cross-sections of all possible systems of scatterers
which are identical to the one in 10.7 can be described by

dσ

dΩ
(Q
¯

) =
1

N

∑
i,j

bi bj e
ıQ
¯
r
i e
−ıQ

¯
r
j . (10.8)

If the scattering length bi occur in the same fraction xi, whereby
∑

i xi = 1, so that the

averages b and b2 can be written as

b =
∑
i

xi bi and b2 =
∑
i

xib
2
i . (10.9)

Under the condition that there are no correlations between the scattering lengths of the
individual nuclei one can write

bi bj = b
2

for i 6= j and bi bj = b2 for i = j (10.10)

From this it follows for the differential cross-section

dσ

dΩ
(Q
¯

) =
1

N

b2 + b
2∑

i,j
i 6=j

e
ıQ
¯
r
i e
−ıQ

¯
r
j

 =
1

N

(
b2 − b2

)
︸ ︷︷ ︸

dσinc
dΩ

+
1

N
b

2

∣∣∣∣∣∑
i

e
ıQ
¯
r
i

∣∣∣∣∣
2

︸ ︷︷ ︸
dσcoh
dΩ

(10.11)

10.1.1.1. Nuclear scattering. The simplest system of scatterers consist of only one
isotope with nuclear spin I. As the spin of the neutron is s = ±1/2 only two orientations
are possible: parallel spins of neutron and nuclei, i.e. a total spin of J(+) = I + 1/2 or
antiparallel spins, i.e J(−) = I − 1/2. The corresponding scattering length are named
b(+) and b(−).

1

The number of possible states for the total spin J(±) are 2J(+) + 1 = 2I + 2 and
2J(−) + 1 = 2I. In case of unpolarized neutrons and/or random oriented nuclear spins

1For coherent scattering the spin of the neutrons keep constant in contrast to incoherent scattering
where a part come along with a spin-flip. This can e.g. be used to change the ration between coherent
and incoherent scattering.
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parallel and antiparallel spin states have the same probability. The fraction x(±) of the
scattering lengths b(±) is therefore proportional to the corresponding number of states

x(+) =
2J(+) + 1(

2J(+) + 1
)

+
(
2J(−) + 1

) =
I + 1

2I + 1
and x(−) =

I

2I + 1
. (10.12)

For the average scattering length b we therefore get

b =
∑

i=(+),(−)

xi bi =
1

2I + 1

[
(I + 1) b(+) + I b(−)

]
. (10.13)

For a mixture of different elements and isotopes of type l with nuclear spin Il and the
fraction xl (with

∑
l xl = 1) the averages can be written as

b =
∑
l

xl
2Il + 1

[
(Il + 1) bl(+) + Il bl(−)

]
(10.14)

b2 =
∑
l

xl
2Il + 1

[
(Il + 1)

(
bl(+)

)2
+ Il

(
bl(−)

)2
]

. (10.15)

10.1.1.2. Magnetic Scattering. In magnetic materials the contribution of the inter-
action between neutrons and atomic magnetic dipole moments to the scattering length
has the same order of magnitude than the nuclear scattering length. The magnetic scat-
tering is based on the interaction of the magnetic moment of the neutron µn with the
magnetic moment of the scattering atom µA. The magnetic interaction potential V (r

¯
)

is described by

V (r
¯
) = −µn · B¯(r

¯
), (10.16)

whereby µn = γ e~
2mp
σ = γµN is the magnetic dipole moment2 of the neutron, σ Pauli’s

spin operator, γ the neutron magnetic moment to nuclear magneton ratio3 and B
¯

(r
¯
) the

magnetic field of an atom at the position of the neutron. An atom generates a magnetic
field due to the magnetic dipole moment µS of its electrons B

¯S
(r
¯
)

B
¯S

(r
¯
) = ∇× A

¯
with A

¯
=
µ0

4π

µS × r
¯

r3
(10.17)

and due to the orbital angular momentum of the electrons l
¯

= −p
¯
× r

¯
which generates

a field of B
¯L

(r
¯
)

B
¯L

(r
¯
) = −µ0

4π

2µB
~

p
¯
× r

¯
r3

. (10.18)

The magnetic interaction potential V (r
¯
) = −µn · (B¯S(r

¯
) + B

¯L
(r
¯
)) is a weak long range

potential which also can be treated with Born’s approximation. Compared to the nuclear

2neutron magnetic moment: µn = −0.96623645× 10−26 JT−1, neutron magnetic moment to Bohr
magneton ratio:µn/µB = −1.04187563 × 10−3, nuclear magneton: µn = 5.05078343 × 10−27 JT−1,
Bohr magneton: µB = e~

2me
= 927.400949 × 10−26 JT−1, proton mass: mp = 1.67262171 × 10−27 kg,

neutron mass: mn: 1.67492728× 10−27 kg, electron mass: me9.1093826× 10−31kg, elementary charge:
e = 1.60217653× 10−19 C, Planck constant over 2π: ~ = h/2π = 1.05457168× 10−34 J s

3neutron magnetic moment to nuclear magneton ratio γ = µn/µN − 1.91304273
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scattering amplitude the corresponding magnetic scattering amplitude bM is given by
the Fourier transformation of the magnetic interaction potential F [V (r

¯
)]

bM = − mn

2π~2
µn ·

∫
d3r eıQ¯

r (B
¯S

(r
¯
) + B

¯L
(r
¯
)). (10.19)

The Fourier transformation of the magnetic field is related in case of a static magnetic
field to the Fourier transformation of the local magnetization M

¯
(Q
¯

) = F [M
¯

(r
¯
)] [93] by

B
¯

(Q
¯

) = µ0

Q
¯
× [M

¯
(Q
¯

)×Q
¯

]

Q2
= µ0 M

¯ ⊥
(Q
¯

), (10.20)

whereby M
¯ ⊥

(Q
¯

) is the component of M
¯

(Q
¯

) perpendicular to Q
¯

and µ0 = 4π 10−7 Vs/Am

the magnetic constant. For the magnetic scattering amplitude4 bM we find than

bM = DM µ0 σ ·M
¯ ⊥

(Q
¯

) with DM = −γ mn

2π~2
µN = 2.31605× 1014 1

m2 Tesla
.

(10.21)

For scattering on magnetic structures always two interactions have to be considered,
nuclear scattering which is caused by fluctuations in the number density and compo-
sition and magnetic scattering caused by fluctuations in amplitude and/or orientation
of the local magnetization. In case of a preferred orientation, e.g. the direction of an
external applied magnetic field H

¯
, the magnetic scattering depends on the spin state σ

of the neutron. If e
¯x

describes the direction of the preferred axis and (+) and (−) the
neutron spin polarisation antiparallel and parallel to e

¯x
than the scattering can be de-

scribed by four scattering processes; these are two spin non-flip (++,−−) and two spin
flip (+−,−+) processes. Moon, Riste und Koehler [66] have shown that for coherent
scattering the four scattering length are given by

b±± = bN ∓DM µ0M⊥x (10.22)

b±∓ = −DM µ0 (M⊥z ± ıM⊥y). (10.23)

whereby bN is the nuclear scattering length. In case of unpolarized neutrons the differ-
ential scattering cross-section can be written as

dσunp

dΩ
(Q
¯

) =
dσnuc

dΩ
(Q
¯

) +
dσmag

dΩ
(Q
¯

), (10.24)

because (b2
++ + b2

−− + b2
+− + b2

−+)/2 = b2
N + D2

Mµ
2
0M

2
⊥. For unpolarized neutrons the

interference contribution only has an influence on the degree of polarization of the
scattered neutrons but not on the scattering intensity.

4Frequently the magnetization is given in units of Bohr magnetons (µB = e~
2me

= 927.400949×10−26

J/T, 1[J/T]=1[Am2]) per atomic volume Ω so that the magnetic scattering length density can be
written as bM = Dµ

∑
i ciMi/Ωi with Dµ = 2.69914 × 10−15m2. The two constants are related via

Dµ = DMµ0µB .
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10.1.2. Scattering of x-ray at atoms. The scattering of x-rays on matter prac-
tically exclusively depends on the interaction of the incoming radiation with electrons.
The contribution on the nuclei is negligible small because the mass of the nuclei is
more than 103 times larger than the mass of an electron and the energy of the nuclear
scattering more than 106 smaller than the energy of the scattering on electrons.

The frequency ν0 = c/λ of the incoming x-ray beam is in general large against the
resonance frequency of the electrons. In this case the electrons can be considered to be
free and the special properties of the chemical binding are of no importance. These are
the conditions for Thomson-scattering. J.J. Thomson developed a simple classical model
for this type of scattering. Under the influence of an electric field of x-rays electrons
start to oscillate. For an incoming plane and monochromatic wave with an electric field

E
¯

= E
¯0e

ı(k
¯0r¯
−ωt) the amplitude Es of a wave scattered on a free electron is

Es = −E0
e2

mec2

1

r
sinψ. (10.25)

Hereby e and me are the charge5 and mass6 of the electron, respectively. c is the speed of
light7, r the distance between sample and detector and ψ the angle between the direction
of the accelerated electrons by the incoming wave and the direction of the scattered wave.

Analogously to the neutron scattering length for an electron the x-ray scattering
length (far field of a Hertz dipole) is defined as

bx−ray =
e2

mec2
sinψ = r0 sinψ (10.26)

whereby r0 = e2/(mec
2) = 2.82×10−13 cm is the classical electron radius. For small angle

scattering ψ ' π/2 whereby the angle dependent polarization factor is approximately 1.
For calculating the scattering amplitude of an atom with Z electrons one has to sum

up the scattered waves from the different electrons with the correct phase. To do this an
electron density distribution ρe(r

¯
) can be introduced which describes the time average

probability distribution of the electron in the atom. The scattering amplitude of an
atom is than

fa(Q
¯

) = r0 L(Q)︸ ︷︷ ︸
polarization

factor
∼1

∫
dr
¯
ρe(r

¯
) eıQ¯

r Q→0
= r0 Z. (10.27)

The charge distribution in an atom can be described in good approximation by a radial
symmetric function so that

fa(Q) = r0

∞∫
0

sinQr

Qr
ρe(r) 4πr2 dr

Q→0
= r0

∞∫
0

ρe(r) 4πr2 dr = r0Z. (10.28)

In small angle scattering the scattering length of an atom is therefore fa = r0Z or in
units of ”electon units [e.u.]” f = fa/r0 = Z.

5e = 1.60217653× 10−19 C
6me = 9.1093826× 10−31 kg
7c = 299792458 m s−1
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10.1.2.1. Anomalous scattering of x-rays. The relation f = Z for atomic scattering
length is only valid as long as the energy of the incoming radiation is much larger than
the energy of the K-, L-, etc. shells. In case that the absorption edge of an atom is
close to the energy of the incoming beam the scattering length has to be corrected by a
dispersion term. In general the scattering length of an atom depends on the energy of
the x-rays and is a complex number

f(E) = Z + f ′(E) + ıf ′′(E) . (10.29)

The correction terms f ′ and f ′′ change the scattering length f near a Kα absorption
edge typically up to 30%. Figure 10.2 shows the energy dependency of the scattering
length of iron f ′Fe und f ′′Fe. The dispersion terms are related via the Karamer-Kronig
relation

f ′(E) =
2

π

∞∫
0

dE ′
E ′ f ′′(E ′)

E ′2 − E2
. (10.30)

In general the imaginary part f ′′ can be determined experimentally by the mass ab-

Figure 10.2. Energy dependence of the real and imaginary part of the
scattering length of iron: ZFe + f ′Fe(E) and f ′′Fe(E) (ZFe = 26)
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sorption coefficient µm(E) = 2NA
A
λ r0 f

′′(E) (Na Avogadro number, A mass of atom in
resonance) to calculate than with equation 10.30 the real part of the scattering length
f ′(E).

10.2. Small angle scattering

In small angle scattering geometry the structural unit down to single atoms can
not be resolved, only structures larger than several atomic layers can be seen by that
method. Small angle scattering techniques measure the beam scattered close to forward
direction whereby the beam divergence is in the order λ/L � 1. For a wavelength of
λ = 1 nm and a characteristic dimension L = V 1/3 of the scatterer of about 10 nm the
divergency of the beam is about λ/L = 0.1 rad ' 6.3◦.

In principle with small angle scattering both information on size as well as shape
of the scatterer and information on the relative arrangement of the scatterer can be
obtained. In the following an overview of the theoretical basics to analyze small angle
scattering data will be given.

In section 10.1 the scattering of an ensemble of atoms has been discussed. There
interference terms between the waves scattered by the individual atoms were important
for the differential scattering cross-section (eq. 10.7 ,10.28).

dσ

dΩ
(Q
¯

) =
1

N

∣∣∣∣∣
N∑
j=1

bj e
ıQ
¯
r
j

∣∣∣∣∣
2

or
dσ

dΩ
(Q
¯

) =
1

N

∣∣∣∣∣
N∑
j=1

fa,j(Q
¯

) eıQ¯
r

∣∣∣∣∣
2

. (10.31)

Small angle scattering normally does not resolve dimension down to atomic dimensions.
Therefore the summation over the individual atoms can be replaced by an integration
over the illuminated volume V :

dσ

dΩ
(Q
¯

) =
1

N

∣∣∣∣∣∣
∫
V

dr
¯
ρ(r

¯
) eıQ¯

r

∣∣∣∣∣∣
2

=
1

N
I(Q

¯
) , (10.32)

whereby ρ(r
¯
) is the local scattering length density and F (Q

¯
) the scattering amplitude.

The differential scattering cross-section is mathematically the square of the modulus
of the Fourier transformation of the scattering length density. The scattering length
density ρ(r

¯
) is proportional to the locally averaged scattering potential V̄ (r

¯
). Thats why

equation 10.32 is except a constant identical to equation 10.6. The scattering intensity
I(Q

¯
) = |z|2 = z z∗ can therefore be written as

I(Q
¯

) =

∫∫
dr
¯1 dr

¯2 ρ(r
¯1) ρ∗(r

¯2) eıQ¯
(r1−r2) . (10.33)

By using the substitution r
¯

= r
¯1 − r

¯2 one get

I(Q
¯

) =

∫
dr
¯
eıQ¯

r

∫
dr
¯1 ρ(r

¯1) ρ∗(r
¯1 − r

¯
)︸ ︷︷ ︸

Γ(r
¯
) = ρ(r

¯
) ~ ρ(r

¯
)

=

∫
dr
¯

Γ(r
¯
) eıQ¯

r . (10.34)
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Γ(r
¯
) is the autocorrelation function8 In case of a real scattering length density eq. 10.34

is the convolution integral Γ(r
¯
) = ρ(r

¯
) ∗ ρ(r

¯
) =

∫
dr
¯1 ρ(r

¯1) ρ(r
¯1 − r

¯
) of the scattering

length density and is called Patterson function9.

10.2.1. Autocorrelation function Γ(r
¯
) and γ(r

¯
). In the following we will make

use of two simplifications. Firstly the scattering system is assumed to be isotropic.
Hereby the isotropy can have its origin both in the shape of the scatterer or being a
consequence of the temporal change of the particle orientation. The consequence is that

Γ(r
¯
) only depends on the modulus of r and eıQ¯

r can be averaged over all orientations of
r
¯
. (The second simplification will follow further below)

10.2.1.1. Isotropic averages. If α is assigned to the angle between Q
¯

and r
¯

and if all
orientations α are equal probable than the probability pα dα that Q

¯
and r

¯
include the

angle α is equal to 1
2

sinα dα.

pα dα =
2π R sinα

4π R2
Rdα =

sinα

2
dα (10.35)

The average of eıQ¯
r over all orientations of r

¯
is

eıQ¯
r

r
¯ =

π∫
0

dα
sinα

2
eıQr cosα =

sinQr

Qr
(10.36)

=

π∫
0

dα
sinα

2
cos(Qr cosα)

︸ ︷︷ ︸
symmetric to α=π/2

+ı

π∫
0

dα
sinα

2
sin(Qr cosα)

︸ ︷︷ ︸
antisymmetric to α=π/2 ⇒ =0

= 2

π
2∫

0

dα
sinα

2
cos(Qr cosα) =

1

Qr

Qr∫
0

du cosu =
sinQr

Qr

and equation 10.34 is simplified to

I(Q) =

∫
dr 4π r2 Γ(r)

sinQr

Qr
. (10.37)

8Normally the autocorrelation function is defined as ρ(r
¯
) ~ ρ(r

¯
) =

∫
dr
¯1
ρ(r

¯1
) ρ∗(r

¯1
+ r

¯
), so that in

fact Γ(r
¯
) should be Γ(r

¯
) = ρ(−r

¯
) ~ ρ(−r

¯
).

9Here the Patterson function is defined as the autocorrelation of the scattering length density ρ(r
¯
).

Instead of defining the cross-section via a scattering length density as in 10.34 in neutron scattering
the differential cross-section is often defined as dσcoh(Q

¯
)/dΩ = (σcoh/4πN)

∫
dr
¯
ρ(r

¯
) ~ ρ(r

¯
) exp(ıQ

¯
r
¯
),

whereby σcoh = 4π b
2

is the coherent cross-section and ρ(r
¯
) the particle number density. The Patterson

function is than the autocorrelation of the particle number density. This function is independent of
the scattering lengths and only dependent on the geometric arrangement of the scattering centers.
The Fourier transformation of the Patterson function is therefore sometimes called Structure factor
S(Q

¯
) and is related in case of a static approximation to the differential cross-section by the equation

dσcoh(Q
¯

)/dΩ = (σcoh/4πN)S(Q
¯

).
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10.2.1.2. Absence of long range order. As a second simplification it will be assumed
that long range order is absent. The consequence is that the autocorrelation Γ(r) be-
comes constant for large values of r. It converges to Γ̄ = ρ̄2V . ρ̄ is the average scattering
length density defined by∫

dr
¯

(ρ(r
¯
)− ρ̄) =

∫
dr
¯
η(r

¯
) = 0 . (10.38)

Structural information is therefore only contained in a finite range of Γ(r
¯
) where it

deviates from the average value Γ̄. This is due to the fact that only a deviation of η(r
¯
)

from the average ρ̄ leads to a scattering contribution for Q 6= 0. An additional constant
value ρ̄ only contributes to the scattering at Q = 0 and is therefore not accessible.
Consequently the average scattering length density can be subtracted without loss of
generality and only deviations η(r

¯
) = ρ(r

¯
)−ρ̄ have to be considered. The autocorrelation

function is therefore defined as

γ(r) =
1

V
η(r

¯
) ~ η(r

¯
)

r
¯ =

1

V
(ρ(r

¯
)− ρ̄) ~ (ρ(r

¯
)− ρ̄)

r
¯ (10.39)

⇒ I(Q) = V

∞∫
0

dr 4π r2 γ(r)
sinQr

Qr
. (10.40)

V γ(r
¯
) is different from Γ(r

¯
) due to the definition of ρ̄ (eq. 10.38) only by a constant

term ρ̄2 V , i.e. V γ(r
¯
) = Γ(r

¯
)− ρ̄2 V because

Γ(r
¯
) =

∫
dr
¯1 ρ(r

¯1) ρ∗(r
¯1 − r

¯
) =

∫
dr
¯1 (ρ̄+ η(r

¯1))(ρ̄+ η(r
¯1 − r

¯
))∗ (10.41)

= ρ̄2V +

∫
dr
¯1 (ρ̄ η(r

¯1) + ρ̄∗ η∗(r
¯1 − r

¯
))︸ ︷︷ ︸

= 0 due to def. of η(r
¯
) in eq. 10.38

+

∫
dr
¯1 η(r

¯1) η∗(r
¯1 − r

¯
)(10.42)

= ρ̄2V + γ(r
¯
)V. (10.43)

10.2.1.3. Limits r = 0 and r =∞. The limits r = 0 and r →∞ for the autocorrela-
tion γ(r

¯
) are γ(0) = η2 and γ(∞) = 0. The limit r →∞ is zero because η(r

¯
) is defined

as the deviation of the average scattering length density ρ̄. As long range correlation is
assumed not to be present η(r

¯
)~ η(r

¯
)
r→∞
= η̄2 = 0. γ(r) can be calculated by the inverse

Fourier transformation of the scattering intensity I(Q) (eq. 10.40)

V γ(r) =
1

2π2

∞∫
0

dQQ2 I(Q)
sinQr

Qr
. (10.44)

An important special case is r = 0 for which equation 10.44 can be simplified to

V γ(0) = V η2 =
1

2π2

∞∫
0

dQQ2 I(Q) =
Q̃

2π2
. (10.45)

The integration of the intensity I(Q) in reciprocal space is therefore directly related to

the average quadratic deviation of the scattering length density η2 but independent to
the shape of the scatterers. If for example the scattering particle undergoes deformation
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the scattering pattern may change drastically but the integral Q̃ in eq. 10.45 keeps
invariant against such a deformation.

10.2.2. Volume fraction. The average quadratic deviation of the scattering length
density is directly related in a two-phase system to the scattering contrast ∆η and volume
fraction fp of one or the other (1 − fp) phase. The average quadratic deviation of the
scattering length density is defined as

η2 = η2
1 fp + η2

2 (1− fp), (10.46)

whereby η1 and η2 are the scattering length density differences of the two phases from
the average value ρ̄ and the scattering contrast is than defined as ∆η = η1 + η2. The
average value ρ̄ is given by

ρ̄ = (ρ̄− η1)fp + (ρ̄+ η2)(1− fp) ⇔ fp (η1 + η2) = fp ∆η = η2 (10.47)

or (1− fp) ∆η = η1 .

Replacing η1 and η2 in eq. 10.46 leads to

η2 = ∆η2 fp(1− fp). (10.48)

The second moment of the scattering intensity, the so-called scattering invariant Q̃ from
eq. 10.45, can therefore be related to the volume fractions of the two phases fp and
(1− fp) by

Q̃ =

∫
dQQ2 I(Q) = 2π2 V ∆η2 fp(1− fp) . (10.49)

Due to the Babinet principle in a scattering experiment the volume fractions can not
be uniquely assigned to one or the other phase. A system with exchanged phases would
have the same invariant A unique solution of eq. 10.49 for the volume fraction can only
be obtained if either one already knows from somewhere else that the volume fraction of
one phase is much smaller than the volume fraction of the other (dilute case) or if time
resolved experiments are performed during the formation of the structure and when it
is known that one phase is growing on the cost of the other one (Ostwald ripening).

10.2.3. Interparticle interferences. The square of the Fourier transformation of
the scattering length density of a sample with a volume V is equal to the scattering
intensity I(Q

¯
)

I(Q
¯

) =

∣∣∣∣∣∣
∫
V

dr
¯
ρ(r

¯
) eıQ¯

r

∣∣∣∣∣∣
2

. (10.50)

The integration has to be carried out over the whole illuminated sample volume V . If
the sample volume contains N particles embedded in a matrix with a constant scattering
length density ρM and if R

¯ i
defines the center of particle i with a constant scattering
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length density ρP,i = ∆ηi + ρM the scattering intensity can be written as

I(Q
¯

) =

∣∣∣∣∣
N∑
i=1

Fi(Q
¯

) e
ıQ
¯
R
i

∣∣∣∣∣
2

(10.51)

with Fi(Q
¯

) =

∫
Vi(R

¯ i)

dr
¯

∆ηi e
ıQ
¯

(r
¯
−Ri) = ∆ηi

∫
Vi(0

¯
)

dr
¯
eıQ¯

r = ∆ηi Vi fi(Q
¯

).

Vi(R
¯ i

) describes the integration volume of scatterer i located at R
¯ i

and Vi(0
¯
) describes

the integration volume of the scatterer i moved to the origin of the coordinate system.
∆ηi and Vi are the scattering contrast and particle volume, respectively. The square of
the modulus in eq. 10.51 can be rewritten to

I(Q
¯

) =
N∑
i=1

N∑
j=1

Fi(Q
¯

)F ∗j (Q
¯

) eıQ¯
R
¯ ij

=
N∑
i=1

∣∣Fi(Q
¯

)
∣∣2 + (10.52)

2
N∑
i=1

N∑
j>i

[
<
(
Fi(Q

¯
)F ∗j (Q

¯
)
)

cos Q
¯

R
¯ ij
−=

(
Fi(Q

¯
)F ∗j (Q

¯
)
)

sin Q
¯

R
¯ ij
]

︸ ︷︷ ︸
Ψ(Q

¯
)

The first term for which i = j the phase factor is identical to 1 and describes the
sum of the scattering intensity of individual particles. The double sum in the second
term describes interference effects of the scattering amplitudes scattered from different
particles which depends on their relative arrangement R

¯ ij
= R

¯ i
− R

¯ j
. The scattering

amplitude Fi(Q
¯

) is among other things dependent on the scattering contrast ∆ηi and on
the normalized form factor Fi(Q

¯
)/∆ηiVi = fi(Q

¯
), whereby fi(Q

¯
) is a real-valued function

with fi(Q = 0) = 1. Analytical expressions for scattering intensities i0(Q) = |f(Q)|2 of
simple geometric bodies are listed in the chapter 3. In case ∆ηi is complex valued, i.e.
the scatterer has an absorption contrast ∆η′′i , the scattering contrast can be written as
∆ηi = ∆η′i + ı∆η′′i and for the interference term we get

Ψ(Q
¯

) = 2
N∑
i=1

N∑
j>i

fi(Q
¯

) fj(Q
¯

)Vi Vj (10.53)

×
[
(∆η′i ∆η

′
j + ∆η′′i ∆η′′j ) cos Q

¯
R
¯ ij
− (∆η′i ∆η

′′
j −∆η′′i ∆η′j) sin Q

¯
R
¯ ij
]

.
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If now all particle have an identical scattering contrast ∆η = ∆ηi = ∆ηj we get for the
scattering intensity (eq. 10.51) the expression

I(Q
¯

) =
N∑
i=1

V 2
i (∆η′2 + ∆η′′2)

∣∣fi(Q
¯

)
∣∣2

+2
N∑
i=1

N∑
j>i

fi(Q
¯

) fj(Q
¯

)Vi Vj (∆η′2 + ∆η′′2) cos Q
¯

R
¯ ij

. (10.54)

For identical scattering contrasts there is consequently no interference between the scat-
tering amplitude of waves scattered at the real and at the imaginary (absorption) part
of the scattering contrast.

10.2.3.1. Isotropic ensemble of particles. In the following we assume as another sim-
plification an isotropic ensemble of particles. Such a system of scatterer is defined as
follows: If R

¯ i
defines the position of any particle i and R

¯ ij
is the difference vector be-

tween the position of particle i and j than a system of particles is called isotropic if all
vectors R

¯ ij
of the same length will take with equal probability any direction. Under this

simplification the interference term Ψ(Q
¯

) in eq. 10.53 can be averaged over all directions

R
¯ ij

. This average yield for sin Q
¯
R
ij

R
¯ ij = 0 and for cos Q

¯
R
ij

R
¯ ij =

sinQRij
QRij

(compare

with eq. 10.37). The interference term can then be written as

Ψ(Q
¯

) = 2
N∑
i=1

N∑
j>i

fi(Q
¯

) fj(Q
¯

)Vi Vj (∆η′i ∆η
′
j + ∆η′′i ∆η′′j )

sinQRij

QRij

. (10.55)

Therefore also for an isotropic ensemble of scatterers no interferences between waves
scatterer at the real and imaginary part of the scattering contrast disappears as already
shown for systems of particles with identical scattering contrast.

10.2.4. Influence of the relative arrangement of scatterers on interparti-
cle interferences. The expression for Ψ(Q

¯
) can be further simplified if the scattering

system consist of identical particles which fulfill the condition that for all of them each
orientation be likewise probable and furthermore the relative position of two particles
do not have an influence on their orientation. The second part of the assumption is
for radial symmetric particle automatically fulfilled. However, in case of a system of
close packed ellipsoidal particles with half axis R, R and νR with ν > 1 distance of 2R
between the centers of the ellipsoids are possible, but for such an arrangement not all
orientations of the ellipsoids are allowed anymore. That means that the relative distance
has an influence on allowed orientations of the particles. The general case without the
restrictions made in this paragraph are discussed by Guinier and Fournet in [37]. For
only slightly anisotropic and not to closely packed systems the assumptions made here
are at least fulfilled in first approximation. Under the made assumptions the averag-
ing over the particle orientations can be separated from the averaging of the particle
positions. As a result from the average one gets for the scattering intensity

I(Q) = N |F (Q)|2 + 2
∣∣∣F (Q)

∣∣∣2 N∑
i=1

N∑
j>i

sinQRij

QRij

(10.56)
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For low concentrations this averaging is in first approximation also valid for particles
with a size distribution. The probability to find a particle at the position R

¯ i
is in average

N
V
dR

¯ i
and the probability to find at the same time another particle at position R

¯ j
is

N
V
dR

¯ i
N
V
dR

¯ j
. A deviation from this is considered by P (Rij) so that the double sum in

eq. 10.56 can be written as

N∑
i=1

N∑
j>i

sinQRij

QRij

=

∫
V

∫
V

sinQRij

QRij

P (Rij)
N2

V 2
dR

¯ i
dR

¯ j
. (10.57)

For isotropic media the function P (Rij) is independent of the indices i and j and only a
function of the distance R. P (R) has the property to converge for large distance against
one. By the substitution P (R) = 1− (1− P (R)) one gets for the interference term

Ψ(Q) =
∣∣∣F (Q)

∣∣∣2N2

V 2

∫
V

∫
V

sinQRij

QRij

dR
¯ i
dR

¯ j
(10.58)

−
∣∣∣F (Q)

∣∣∣2N2

V 2

∫
V

∫
V

sinQRij

QRij

(1− P (Rij)) dR
¯ i
dR

¯ j
. (10.59)

The first term can be interpreted as the scattering of a particle with the volume V and
the average scattering contrast F (Q)N

V
. As the illuminated sample volume V is relatively

large this contribution is practically zero for all experimental accessible scattering angles.
As for isotropic media the integration over dR

¯ i
is independent from the integration over

dR
¯ j

and (1 − P (R)) quickly converges against zero the first integrationin the second
term (neglecting side effects) can be written as

∞∫
0

dR
sinQR

QR
(1− P (R))

N2

V 2
4 π R2. (10.60)

The second integration only yields an additional multiplication factor V . Finally one
gets for the scattering intensity the expression

I(Q) = N

|F (Q)|2 −
∣∣∣F (Q)

∣∣∣2 N
V

∫
dR 4π R2 (1− P (R))

sinQR

QR︸ ︷︷ ︸
Υ(Q)

 .

(10.61)

10.2.4.1. Formula from Prins and Zernicke. For radial symmetric identical scatterer

the quare of the average form factor
∣∣∣F (Q)

∣∣∣2 and the average of the squared form factor

|F (Q)|2 are the same so that one get for the expression from Prins and Zernicke [107]
and from Debye und Mencke [22]

I(Q) = N F 2(Q)

{
1− N

V

∫
dR 4π R2 (1− P (R))

sinQR

QR

}
︸ ︷︷ ︸

S(Q)=1−Υ(Q)

. (10.62)
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The problem of applying eq. 10.61 or 10.62 is the evaluation of P (R). P (R) depends on
the geometric arrangement of the scatterer. For liquid emulsions the geometric arrange-
ment can be related to thermodynamic quantities like concentration, temperature and
interaction potential between the particles. In a theory of Raman [82] the geometric
arrangement is associated to the interaction potential U(r) in a simple way. According
to his theory the potential is the sum of two-body interactions and he finds for P (r)
the relation P (r) = exp(−U(r)/kT ). For larger concentrations many-body interactions
have to be taken into account. In a more general theory of Born and Green [13] three-
body interactions are at least considered in first approximation and they find for the
scattering intensity the expression

I(Q) = N

{
|F (Q)|2 +

∣∣∣F (Q)
∣∣∣2 χ(Q)

V
N

(2π)−3/2 − χ(Q)

}
(10.63)

with χ(Q) =

√
2

π

∞∫
0

dr
[
e−U(r)/kT − 1

]
r2 sinQr

Qr
.

For a simple hard sphere model with the interaction potential U(r) =
{

0 for r>2R
∞ for r≤2R

the

scattering intensity can be calculated analytically. According to Raman’s theory Debye
calculates for the scattering intensity of spheres with a radius R and a volume VP the
expression

I(Q) = N K2(QR)

{
1− 8N

VP
V
K(2QR)

}
, (10.64)

whereby K(x) is the scattering function of a sphere given in section 3.1.1. Following the
theory of Born and Green one gets a similar expression

I(Q) = N K2(QR)

{
1 + 8N

VP
V
K(2QR)

}−1

. (10.65)

Nonetheless both theories are only valid for monodisperse systems of scatterer. In prac-
tice, however, most scattering systems have a more or less pronounced size distribution
and frequently also an additional variety of shapes. For such systems the interaction
potential can not be expressed in a closed form. One has to introduce for each pair of
particle type a separate potential [1] which complicates the analytical treatment a lot.

10.2.4.2. Isolate particles. A system of isolate particles is characterized by its prop-
erty that the positions of a particle is not influenced by the positions of any other particle.
For this case the interaction potential U(r) and consequently also χ(Q) is identical zero.
Therefore the expression for the scattering intensity simplifies to

I(Q) = N |F (Q)|2 or I(Q
¯

) =
N∑
i=1

∣∣Fi(Q
¯

)
∣∣2. (10.66)

The total scattering intensity is simply the sum of the intensity scattered by the indi-
vidual particles. A system of non-interacting particles can be realized by diluting the
system. Thereby the average distance between the particles is increased and the interac-
tion potential becomes negligible small and does not influence anymore the arrangement
of the scatterer.
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10.2.4.3. Polydisperse System of isolated particles. The scattering function of a poly-
disperse system of isolated particles is determined by the shape and size of the particles.
In a scattering experiment it is not possible to separate both quantities at the same time.
In the data analysis one has to assume one of the quantities either the shape or the size
distribution to get then the other quantity. Normally the shape is assumed whereby
the size distribution is than obtained from the scattering curve [34, 100]. To get an
information about the shape one normally need a system of identical particles, like for
example a system of identical proteins. An additional but known size distribution would
smear out the scattering too much to still allow to extract confidential information about
the particle shape. The scattering intensity of a system of isolated particles of different
shape and a size distribution is given by

I(Q
¯

) =
M∑
µ=1

∫
Nµ(R) |Fµ(Q,R)|2 dR, (10.67)

whereby Nµ(R) is the size distribution of particles of type µ and Fµ(Q,R) its form
factor. Form factor of simple objects are listed in chapter 3 and frequently used size
distributions in chapter 5.

10.2.5. Influence of N(R) and F (Q,R) on interparticle interferences. Inter-
particle interferences in small angle scattering signals have been described in eq. 10.61
and 10.62 by

I(Q) = N |F (Q)|2

1 +

∣∣∣F (Q)
∣∣∣2

|F (Q)|2
(S(Q)− 1)

 (10.68)

Hereby S(Q) describes the influence of the relative arrangement of the scatterers on I(Q)
and can be calculated by the interaction potential between the scattering particles (eq.
10.63). Interparticle interferences depends next to the relative arrangement also on the
square of the average form factor |F (Q)|2. Only for the case of identical and spherical

symmetric scatterer the relation |F (Q)|2 ≡ |F (Q)|2 is valid. In this case the interparticle
interferences only depends on S(Q). For particles with an irregular shape, however, the
two averages are different and depends both on the size distribution as well as on the
particle shape and their orientation distribution. For such systems the condition for
the derivation the relation from Prins and Zernicke 10.61 namely the independency of
orientation and size for higher concentrations is not anymore fulfilled. This condition
allowed in eq. 10.56 to separate the averaging of the particle positions from the averaging
of the form factor. Nevertheless the principle influence of a irregular particle shape and a
size distribution can be made clear by the means of eq. 10.68. For judging their influence

the ratio |F (Q)|2/|F (Q)|2 is considered.
Taking for example a system of identical but random oriented rotational ellipsoids

with the half axis R, R, νR the ratio of the two averages is shown in figure 10.3 together

with the scattering intensity |F (Q)|2 of the corresponding ideal dilutes system. The

derivation of the formula for calculating |F (Q)|2 and |F (Q)|2 are given in appendix ??.
The figure shows that the ratio decreases for larger scattering vectors Q the more the
shaper of the rotational ellipsoid is different from the ideal spherical case (ν = 1).
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An irregular particle shape already is sufficient to reduce the influence interparticle
interferences.

Accordingly also the particle size distribution give rise to a difference in the averages

|F (Q)|2 and |F (Q)|2. Figure 10.3b shows the ratio of the two averages of spherical
scatterers with a lognormal size distribution of different width as a function of Q. For

Q = 0 the ratio is given by |F (Q)|2/|F (Q)|2 = exp(−9σ2). One can see that the width of
the size distribution strongly reduces the interference effect [98].

In general one can say that each kind of disorder reduces interferences. The dis-
order can have its origin in a random arrangement of particles (dilute systems), in an
orientation distribution of irregular shaped particles, or also in a size ditsribution.

(a) The influence of irregular particle shapes

on |F (Q)|2/|F (Q)|2 is shown for an exam-
ple of random orientated rotational ellipsoids
with the half axis R, R, νR for ν = 1, 0.1,
and 1.3.

(b) Influence of a particle size distribution

LogNorm(R) = exp
(
−(lnµ− lnR)2/(2σ2)

)
of the widths σ = 0.1, 0.2, 0.3, 0.4 for µ = 5

nm on |F (Q)|2/|F (Q)|2.

Figure 10.3. For identical and spherical symmetric scatterers the ratio

|F (Q)|2/|F (Q)|2 ≡ 1. Interparticle interferences depend then only on the
relative positions of the scatterers. Size distribution and irregular shapes
reduce these interference effects.

10.2.6. Scattering laws and structural parameter. In this section a series of
useful scattering laws are presented, which are useful for a simple analysis of experimental
data and which allow an easy determination of structural parameters. [37].
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10.2.6.1. Porod volume. The ratio of the scattering intensity in forward direction
I(Q = 0) = N V 2

P ∆η2 and the scattering invariant Q̃ = 2π2∆η2 V fp(1 − fp) can be
used to determine the particle volume VP (V describes the illuminated sample volume).
fp V = N VP corresponds to the total volume of all scatterers whereby the particle
volume VP can be calculated by

VP
1− fp

fp�1
' VP = 2π2 I(Q = 0)

Q̃
. (10.69)

The measurement of the scattering curve in relative units is therefore sufficiant to deter-
mine the volume of a homogeneous scatterer. Sources of errors for this way of determi-
nation of particle sizes are the extrapolation into forward direction und more important
the extrapolation to large scattering angles (Q−4-extrapolation). Furthermore for large
volume fractions fp the particle volume has to be eventually corrected by a prefactor
1/(1− fp) which is not always known.

10.2.6.2. Radius of gyration and Guinier approximation. The scattering intensity for
small angles can be approximated in a series expansion by replacing the expression sinQr

Qr

in eq. 10.40 by a McLaurin series which leads to

I(Q) = V

∫
4π r2 γ(r)

[
1− Q2r2

3!
+
Q4r4

5!
− . . .

]
dr , (10.70)

i.e. I(Q) is expanded by moments rn of γ(r). The first term corresponds to the scattering
intensity of Q = 0. For the second term Guinier and Fournet [37] have shown, that it
can be related to the gyration radius of the scattering length density RG by

V

∫
4π r2 Q

2r2

3!
γ(r) dr = I(0)

Q2R2
G

3
⇒ I(Q) = I(0)

(
1− Q2R2

G

3

)
(10.71)

with R2
G =

∫
η(r) r2 dr/

∫
η(r) dr. Up to the term of Q4 this series expansion at the

beginning of the scattering curve is identical to the series expansion of an exponential
function which than leads to the well known Guinier approximation

I(Q) = I(0) e−Q
2R2

G/3. (10.72)

The Guinier law is valid for any particle shape which is roughly isodiametric. For flat or
elongated structures the Guinier law has to be corrected slightly [27, 37]. The radius

of gyration for a sphere with radius R is given by RG =
√

3/5 R. The Guinier law is
valid in the scattering vector interval 0 < Q < 1/RG.

10.2.6.3. Correlation length. Another characteristic quantity, which can be easily
extracted from the scattering curve I(Q) is the correlation length lc. The correlation
length is defined as the average width of the correlation function γ(r):

lc =
2

γ(0)

∫
γ(r) dr. (10.73)

Together with the definition of the scattering invariant Q̃ in eq. 10.49 and the relation
between I(Q) and γ(r) in eq. 10.44 this results after a short calculation (changing of
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integrations) to

lc = π

∫
QI(Q) dQ∫
Q2 I(Q) dQ

. (10.74)

A sphere with radius R has therefore a correlation length of lc = 3
2
R.

10.2.6.4. Porod law and specific surfaces. The Porod law describes the scattering
behavior at large Q values. As the scattering intensity I(Q) and the correlation function
γ(r) are related via the Fourier transformation the intensity I(Q) is determined at large
values of Q mainly by γ(r) at small r. For small r the correlation function γ(r) can be
expanded in a Taylor series and one gets according to Guinier and Fournet [37]

γ(r)

γ(0)
= 1− 1

4

S

V
+ . . . , (10.75)

whereby S is the total surface of all scatterer in the illuminated sample volume V . Eq.
10.75 together with 10.40 result for large Q values into the Porod law

I(Q) −→ ∆η2 2π S

Q4
. (10.76)

A scaling of the scattering intensity on Q̃ provides an expression for the specific surface
S/V of

lim
Q→∞

π
I(Q)

Q̃
Q4 fp (1− fp) =

S

V
. (10.77)

The Porod law can be applied to all systems having sharp interfaces.





CHAPTER 11

Experimental Setup of a Small Angle Scattering Instrument

11.1. SANS-Camera

Figure 11.1. SANS-1 instrument at PSI, Switzerkand

11.2. SAXS-Camera

401
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Figure 11.2. Small angle x-ray scattering instrument Jusifa at the syn-
chrotron light source HASYLAB in Hamburg



CHAPTER 12

Data Reduction in SAS

12.1. Correction and Normalization of SANS-Raw data

A detector of a small angle scattering camera measures the superposition of intensities
of different origin:

(1) Background noise IB
(2) Scattering of the empty sample holder IH
(3) scattering of the isolated sample IS

Furthermore the detector elements can have different efficiencies εi. To determine the dif-
ferential cross-section of of the sample all the different contribution to the total scattering
intensity have to be considered and determined separately by different measurements.
The quantity to be known is the scattering contribution of the isolated sample IS, which
in general can not be measured directly. Experimental accessible scattering contribu-
tions are the scattering of the sample in the sample holder IS+H , the contribution of the
empty sample holder IH and the background noise IB. From this experimental accessible
data the wanted scattering contribution of the isolated sample has to be determined.

12.1.1. Contribution of the isolated sample. The intensity of the incident
beam will be attenuated by absorption and scattering effects within the sample. Also
the scattered neutrons will be further attenuated on their residual path through the
sample. The measured intensity in a detector element i is given by

I0
S,i =

d∫
0

dxΦ0 ∆Ωi εi e
−αxAρ e−

α(d−x)
cos θ

{
dσcoh

dΩ
+
dσinc

dΩ

}
. (12.1)

Hereby d describes the sample thickness in cm, Φ0 the incident neutron flux in neutrons
per cm2×sec, dΩi is the solid angle of the detector element i in steradian, εi the detection
efficiency of detector element i and α the extinction coefficient of the sample in cm−1.
A the illuminated sample area in cm2. θ describes the angle between the wave vector
k0 of the incident neutrons and the wave vector k of the scattered neutrons. dσcoh

dΩ
and

dσinc

dΩ
are the coherent and incoherent differential cross-sections, respectively. For small

angle scattering cos θ ' 1 and one yields after integration

I0
S,i = Φ0 ∆Ωi εi Aρd︸ ︷︷ ︸

NS

e−αd︸︷︷︸
TS

{
dσcoh

dΩ
+
dσinc
dΩ

}
. (12.2)

The quantity NS = Aρd corresponds to the number of scattering atoms and TS =
e−αd = Itrans

I0
to the transmissions coefficient, which can be determined from the ration

of the intensity of the transmitted primary beam Itrans and the intensity of the incident
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beam I0. The incoherent scattering is isotropically and equally distributed over the
whole solid angle of 4π. Therefore one gets for I0

S,i

I0
S,i = Φ0 ∆Ωi εi

{
NS TS

dσcoh

dΩ
+ A

1− TS
4 π

}
. (12.3)

12.1.2. Correction for sample holder and background noise. The scattering
intensity of an isolated sample can practically never measured directly. The scattering of
the sample is always superposed by scattering from the sample holder and by background
noise. Background noise is meant to be electronic noise, cosmic radiation, and detection
of neutrons, which have not passed through the sample like scattered neutrons from
neighboring experiments. Because of this reasons additional measurements have to be
carried out, which are a measurement of the empty sample holder IH and a measurement
with a strong absorber like Cadmium in front of the sample to measure the background
noise IB. Together with the measurement of the sample in the sample holder IS+H,i the
scattering of the isolated sample I0

S,i on the detector element i can be calculated by

I0
S,i =

(
IS+H,i

MS+H

− IB,i
MB

)
− TS+H

TH

(
IH,i
MH

− IB,i
MB

)
. (12.4)

The index B stands for background, H for the empty sample holder, S+H for the sample
in the sample holder and S for the scattering of the isolated sample. All intensities have
to be normalized on the number of incident neutrons. This can be done for example by
division of the measured intensity my a monitor count rate M . The factor TS+H

TH
takes

account for the attenuation of the beam by the sample.
The differential cross-section in eq. 12.3 can now be calculated from the measurable

intensities in eq. 12.4. Nevertheless the quantities Φ0, ∆Ωi and εi still have to be known.
Furthermore I0

S is not given in physical standard units but in units per monitor count.
All this can be overcome by a comparison with a standard substance St. Common
standard materials are in general materials with a small coherent cross-section and a
large incoherent cross-section like vanadium or water. For both of these materials the
coherent cross-section is negligible small. The scattering intensities of the standard
materials have to be corrected in the same way than the sample itself according to eq.
12.4. The ratio of both intensities I0

S,i/I
0
St,i leads to

I0
S,i

I0
St,i

=

TS NS

(
dσcoh

dΩ
+
dσinc

dΩ

)
TStNSt

dσStinc

dΩ

(12.5)

⇔ dσcoh

dΩ
+
dσinc

dΩ
=

I0
S,i

I0
St,i

TStNSt

TS NS

dσStinc

dΩ
(12.6)

or
dσcoh

dΩ
+
dσinc

dΩ
=

I0
S,i

I0
St,i

(1− TSt)
ASt
4π

TS NS

. (12.7)

If water is used as a standard the last formula has to be multiplied on the right side
with an empirical factor f(λ, σt, T ) ' 1. This factor corrects for the different efficiencies
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of the detector for different neutron energies. This correction can become important in
case of water because of it inelastic scattering behavior.

12.2. Correction and normalization of SAXS raw data
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History

2013-04-30: SASfit 0.93.4
• In the menue for confidence intervall the non-diagonal elements of correla-

tion matrix are shown together with the confidence interval for the fitted
parameters as digonal elements.
• added some addational parameters into the fit menue useful to evaluate

the goodness of a fit
• new plugin for Parallelepiped abc of dimension a*b*c to be found under
[by plugins|anisotropic obj]

• new plugin for generalized Guinier law to be found under [by

plugins|non-particular structures]

• Renamed HMI format into BerSANS format and did some debugging. Now
also all masked data points (negative errors) are ignored.
• added key bindings Home, End, PgUp, PgDn, Insert, Delete for going to

first-last-next-previous entry or to add and remove an entry
• adding plugin with a series of form factor for strongly anisotropic structures

with local planar and local cylindrical shapes
• adding a new plugin form factor for spheres with fuzzy interfaces. The

existing form factors ExpShell, LinShell and LinShell2 have been moved
to this plugin.
• New plugin of FuzzySphere and CoreShellMicrogel. Also the related

functions for calculating the corresponding radial profiles have been added.
• new section in the manual about absolute scale, molecular weight, etc.
• for the form factors flat cylinder long cylinder, and Porod cylinder

the limiting case q ≡ 0 is now treated properly
• small bug fix in the peak function Gamma (Area) for checking validity of

parameter
• bug fix of the resolution parameter handling in case it will be read in from

a data file
• included under peak function the Maxwell distribution and the
generalized Maxwell distribution
• batch fitting

2011-05-04: SASfit 0.93.3
• bug fix in the model Stacked Discs. The structure factor describing the

stacking order contained a bug.
• extended plugin for stroboscopic measurements, especially for TISANE
• plotting: ignore negative y values on log() and sqrt() scales
• included Pcs homogeneousCyl form factor
• bug fix of ferrofluid plugin

• added radial averaged form factor in ferrofluid plugin

• extended the spline plugin to be used also as form factors. In case somebody
wants to fit a spline function to e.g. a TEM size distribution, this function
need to be available as a form factor and not only as a size distribution.
• added configuration file config.ini as replacement for deprecated
sasfit init public.tcl
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• added switch for disabling About popup at start time via config file
• added checkbox (ascii options) for ignoring zero(0) intensity at the begin-

ning of data
• removed , as data column separator
• added substitution of ,⇒ . for data columns (german decimal format to

english format)
• added interface function for covariance matrix output
• covar matrix visualisation with parameter highlighting
• added a chapter about particle number densities, volume fraction and ab-

solute intensities in the manual.
• LogNorm fp size distribution is now plugin function. The new plugin is

not backwards compatible. The manual explains a bit the difficulties in
describing the size distribution in terms of a volume fraction.
• added scrollbars for fit parameter window

2010-07-08: SASfit 0.93.2
• bug fix in ferrofluid plugin
• added radial averaged form factor. Included radial averaged form factors

also for SAW model
• Extended the spline plugin to be used also as form factors. In case some-

body wants to fit a spline function to a size distribution, this function needs
to be available as a form factor and not only as a size distribution.
• forwarding intermediate linear Guinier approximation results to the plot

window (green curve)
• display of linear Guinier approximation results in ISP text output window
• residuum window updated with linear Guinier approximation residuum
• by default disabled, see checkbox in ISP window
• fixed SLDCalculator in source package (missing data files)
• added KNOWN BUGS.txt (not complete)
• optical (layout) GUI improvements:

– removed thick margin around text boxes for ISP/analyt results
– added resizeable file list in ISP window
– added resizeable ’merge files’ list when loading data files

• added menu-¿tools-¿toggle console to show the console, it is hidden by
default now
• added OPTIM parameter to src/CMakeLists.txt for optimized binary gen-

eration on the underlying hardware, use: ’cmake -DOPTIM=TRUE’
• added configuration file config.ini as (working) replacement for depre-

cated sasfit init public.tcl

• added switch for disabling ’about’ popup at start time via config file
• added switch to set the default data directory
• added checkbox (ascii options) for ignoring zero(0) intensity at the begin-

ning of data
2010-05-13: SASfit 0.93.1

removed obsolete print menu entries and fix of textual output bug
2010-05-05: SASfit 0.93.0
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• copy&paste-able text output, as well as csv export (semicolon separated)
for

– integral structural parameters (ISP) data
– parameters of contributions
– moments of size distribution

• improved/rewritten file selection GUI for ISP series fitting
• new and improved plugins: Kratky Sphere, JuelichCoreShell (rewrit-

ten), Langevin
• data is always plotted first, below the calculated lines
• error bars are drawn behind data points
• fixed wrong plotting of very large error bars
• for log-plotting on the y-axis, negative data is ignored (not plotted, was

abs() before)
• fix to prevent the user from loading a SASfit project file as data
• fix in Form-Factor Background (improved numerical stability)
• bug fix for saving parameter files on windows
• bug fix in gui when selecting form factor TwoAttachedSpheres
• bug fix for ”Singular Matrix” error

2010-01-02: SASfit 0.92.3
• implemented three different versions for worm like chains as described

in Macromolecules 1996, 29, 7602-7612. They have been imple-
mented as structure factors [anistropic obj|P’(Q):local cylindrical

geometry], so that it can be combined with different cross-section
form factors of local cylindrical objects [anisotropic obj.|Pcs(Q) for

cylindrical obj.].
• new form factor plugin for a sphere with 3 shells
• new structure factor for a regular cluster up to maximal 5 particle (tetra-

hedron like)
• correction of menue entry order for magnetic shell and superparamagnetic

shell
• new plugin for ferrofluid particles with a scheme similar to the one of J.S.

Pedersen for Gaussian Chains attached to a spherical particle
• bug fix in mMemberedTwistedRing

• two more default plot: Guinier (rods) and Guinier (sheets)

• bug fix in loglogistic peak
• implementation of asymptotic limits for fractals, which require a numerical

integration. The integration often fails for large q-values for which an
asymptotic solution is available or has been constructed.
• reprogrammed SquareWell1 structure factor for a squared well potential
• replaced sasfit qromb function by sasfit integrate function in the form

factor for the torus. The sasfit qromb routine did not work for some
unknown reason. This needs to be checked.
• new structure factor for a thin square well potential
• bug fix in BeaucageExpPowLaw2

• Bug fix for setting plot option Holtzer in multiple data set tab
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• public initialization file sasfit init public.tcl for setting the default
working directory by the user to any path

2009-10-08: SASfit 0.92.2
• data reduction without data loss, after loading a project file the data re-

duction can be reversed
• info message about a guessed error bar is displayed only once when the

ascii options are changed (not for every file)
• added tooltip for complete filenames in merge window
• color for selected fit region stays at dark grey after loading an old project

file
• removed unused help buttons in file open dialogs
• fixed error loop when adding new data to previously loaded project file
• fix for a homedir being e.g. ’U:át startup on Windows
• minor correction in the routine to guess the error bar (normalization) when

only two column are supplied
• fix of rare error ”form factor param out of range: -1”

13th of September: SASfit 0.92.1
• fix for GUI problem with two plugin form factors (contribution updates). If

there are two plugin model functions with a different number of parameters,
you can’t switch/cycle trough the contributions anymore (Next, Previous).
• fix for saving a parameter file (file creation was disabled by accident in

previous version)
8.7.2009: SASfit 0.91.1: Since the previous version of SASfit (0.90.1, January

2009) there were a lot of changes to primarily improve the quality and portability
of the code. Here is only a short summary of the larger changes done:
• added detailed documentation on setup and installation of SASfit , as well

as plugin development (how to add own model functions)
• fixed some bugs in plugin framework
• added automatic determination of available plugins at build time
• enabled static building for plugins
• increasing maximum number of model parameter in GUI
• verified build compatibility for MacOS
• Extended and improved Scattering Length Density (SLD) Calculator. Now

the scattering length density for x-ray energies between 1keV and 24.9 keV
can be calculated.
• a few new form factor have been included: generalized Gaussian

coil, generalized Gaussian coil 1, generalized Gaussian coil 2,
ellCylShell1, ellCylShell2

12.01.2009: SASfit 0.90.1 : bug-fix in plugin-GUI
5.01.2009: SASfit 0.90: new release including full source code and binaries for

windows and linux. Since the previous version of v (0.87, March 2008) there
were a lot of changes to primarily improve the quality and portability of the
code. Here only a short summary of the ’big’ changes done (as of Dec. 17th,
2008):
(1) Structured the source code into the modules sasfit common, sasfit sd,

sasfit sq, sasfit ff, sasfit core.
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(2) Switched to CMake build environment for platform independence. Build
and tested SASfit on Linux and Windows, 32bit as well as 64bit.

(3) Replaced intensive string comparisons for model function selection in each
iteration step by more reasonable selection of functions pointers at initial-
ization time and direct call of the according function at iteration time.

(4) Fixed a lot of bugs and typos in the GUI (but there are still some)
(5) Added flexible plugin system for external model functions. This way, all

model functions can be provided as plugins and though move out of the core
algorithms. Also enables easy customization. In the future the modules
sasfit sd, sasfit sq, sasfit ff and sasfit peaks will be converted to
external plugins.

(6) Added sasfit peaks, a new class of model functions containing peaks.
(7) Added capability to ship SASfit as standalone executable, allows running

on system without the need of external libraries (e.g. Tcl, BLT, ...)
4.03.2008: (SASfit version 0.87) The last modification in the menu navigation

still had bugs. Hopefully they are removed in this version.
28.02.2008: (SASfit version 0.86) The menu navigation has been debugged and

optimized. Corrected a bug in calculating the polydispersity index (PDI) in
DLS cumulant analysis (PDI=Gamma2/Gamma1̂ 2)

25.01.2008: (SASfit version 0.85) A bug for the form factors ROD+Rˆ-a* has been
corrected. The implementation of the scaling approximation, partial structure
factors and local monodisperse approach has been improved.

9.01.2008: (SASfit version 0.84) Form factor for worm-like micelles
(WORM+Chains(RW), WORM+Chains(RW) Rc, WORM+Chains(RW) Nagg) and for
cluster aggregates (Mass Fractal (Exp(-x) Cut-Off), Fisher-Burford,

MassFractExp,MassFractGauss, Mass Fractal (Exp(-xˆa) Cut-Off),

DLCAggregation, RLCAggregation, MassFractOverlappingSph have been
implemented. Furthermore a simple scheme for importing data from the
clipboard has been implemented, which e.g. allows to copy/paste data from
spread-sheets directly into SASfit. Corrected a bug for the form factors
ROD+Rˆ-a*

4.10.2007: (SPHERE+Chains(RW), SPHERE+Chains(RW) Rc,
SPHERE+Chains(RW) NaggSASfit version 0.80) Next to the correction
of some bugs a simulation option for multiple data sets has been implemented.
Furthermore an option has been implemented to subtract a theoretical
scattering contribution from the experimental data set, like e.g. a constant
background signal. The format of the project files have up to now never been
tested for compatibility. An attempt has been started to change this for the
future versions.

20.8.2007: A couple of form factors for spherical, elliptical, cylin-
drical and very long rod-like micelles consisting of a homogeneous
core and which are either grafted with Gaussian chains *(RW)*, or
grafted with semi-flexible self-avoiding and interacting chains *(SAW)*

or a corona with a power-law decaying profile r−α *(Rˆ-a)* have
been implemented: SPHERE+Chains(RW), SPHERE+Chains(RW) Rc,

SPHERE+Chains(RW) Nagg, SPHERE+Chains(SAW), SPHERE+Chains(SAW) Rc,
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SPHERE+Chains(SAW) Nagg, SPHERE+Rˆ-a, SPHERE+Rˆ-a Rc,

SPHERE+Rˆ-a Nagg, ELL+Chains(RW), ELL+Chains(RW) Rc,

ELL+Chains(RW) Nagg, CYL+Chains(RW), CYL+Chains(RW) Rc,

CYL+Chains(RW) Nagg, ROD+Chains(RW), ROD+Chains(RW) Rc,

ROD+Chains(RW) nagg, ROD+Rˆ-a, ROD+Rˆ-a Rc, ROD+Rˆ-a nagg

30.6.2007: Rudimental copy algorithm to copy plots or parameters into window-
clipboard. Everything is copied in wmf-format and the option only works fine
for information in non-scrolled widgets. Copy-option can be activated with
right mouse button or double click of left mouse button. A triaxial ellipsoidal
(triaxEllShell) shell with semiaxis a, b, c and shell thickness t is available.

4.6.2007: Implementation of form factors for cylindrical shells with circular cross-
section and capped ends (CylShell2) and without capped ends (CylShell1)
together with an approximation for very long cylindrical shells (LongCylShell)

27.3.2007: Implementation of form factors for bi-continuous systems
(TeubnerStrey and DAB)

23.2.2007: Implementation of the structure factor for a system of charged, spher-
oidal objects in a dielectric medium according to the RMSA model of Hayter
and Penfold

11.11.2006: Implementation of a semiflexible polymer according to Kholodenko,
some form factors with plane geometry, which are intended to be used
with lamellar structure factors (homogenousXS, TwoInfinitelyThinPlates,
LayeredCentroSymmetricXS, BiLayerGauss), a sphere with Gaussian chains
attached SphereWithGaussChains and a slightly different parametrised form
factor named BlockCopolymerMicelle. An additional option for reading ASCII
data files is now available, which allows to convert values for the scattering vec-
tor from nm−1 into Å−1 and vice versa.

23.10.2006: Implementation of a polydsiperse star PolydisperseStar and of
flexible ring polymers FlexibleRingPolymer and mMemberedTwistedRing.

22.10.2006: Implementation of the form factor of a flexible polymer with Gauss-
ian statistics (in different parameterisations Gauss, Gauss2, Gauss3) for a poly-
disperse flexible polymer with Gaussian statistics (GaussPoly) and a flexible
ring of polymer with Gaussian statistics (FlexiblePolymerRing)

12.10.2006: Under the menu option Calc/DLS... next to a cumulant fit also a
double stretched exponential decay can be selected to fit dynamic light scatter-
ing data.

5.10.2006: Implementation of a spherical shell with a diffuse (expontential) scat-
tering length density profile inside the shell caused by solvent penetration into
the shell

13.9.2006: Implementation of a form factor for spheres with gaussian chains at-
tached.

19.7.2006: First release (current version: 0.71) at the moment only a windows
version is available. The installation files for tcl/tk and blt are included in the
distribution file.
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[90] B. Sjöberg. Small-angle X-ray investigation of the equilibria between copper(II) and glycyl-l-
histidylglycine in water solution. A method for analysing polydispersed systems. Journal of Ap-
plied Crystallography, 7(2):192–199, Apr 1974.



BIBLIOGRAPHY 417

[91] C. M. Sørensen, J. Cai, and N. Lu. Test of static structure factors for describing light scattering
from fractal soot aggregates. Langmuir, 8:2064–2069, 1992.

[92] C. M. Sørensen and G. M. Wang. Size distribution effect on the power law regime of the structure
factor of fractal aggregates. Physical Review E, 60(6):7143–7148, 1999.

[93] G. L. Squires. Thermal Neutron Scattering. Cambridge University Press, 1978.
[94] Markus Stieger, Jan Skov Pedersen, Peter Lindner, and Walter Richtering. Are thermorespon-

sive microgels model systems for concentrated colloidal suspensions? a rheology and small-angle
neutron scattering study. Langmuir, 20(17):7283–7292, 2004. PMID: 15301516.

[95] Carsten Svaneborg and Jan Skov Pedersen. Form factors of block copolymer micelles with
excluded-volume interactions of the corona chains determined by monte carlo simulations. Macro-
molecules, 35(3):1028–1037, 2002.

[96] M. Teubner and R. Strey. Origin of the scattering peak in microemulsions. J. Chem. Phys.,
87:3195, 1987.

[97] O. Toon and T. Ackerman. Algorithms for the calculation of scattering by stratified spheres.
Applied Optics, 20(20):3657, 1981.

[98] P. van Beurten and A. Vrij. Polydispersity effects in the small-angle scattering of concentrated
solutions of colloidal spheres. J. Chem. Phys., 74(5):2744–2748, March 1981.

[99] H.C. van de Hulst. Light Scattering by Small Particles. Wiley, New York, 1957.
[100] C. G. Vonk. On two methods for determination of particle size distribution functions by means

of small-angle x-ray scattering. J. Appl. Cryst., 9:433–440, 1976.
[101] A. Vrij. Mixtures of hard spheres in the percus-yevick approximation. light scattering at finite

angles. J. Chem. Phys., 71(8):3267–3270, 1979.
[102] G. Walter, R. Kranold, T. Gerber, J. Baldrian, and M. Steinhart. Particle size distribution from

small-angle X-ray scattering data. Journal of Applied Crystallography, 18(4):205–213, Aug 1985.
[103] C. M. Wijmans and E. B. Zhulina. Polymer brushes at curved surfaces. Macromolecules, 26:1214–

7224, 1993.
[104] L. Willner, A. Poppe, J. Allgaier, M. Monkenbusch, P. Lindner, and D. Richter. Micellization of

amphiphilic diblock copolymers: Corona shape and mean-field to scaling crossover. EPL (Euro-
physics Letters), 51(6):628, 2000.

[105] W. Wiscombe. Mie scattering calculations–advances in technique and fast, vector-speed computer
codes, ncar tech note tn-140+str. Technical report, National Center For Atmospheric Research,
Boulder, Colorado, 1979.

[106] W. Wiscombe. Improved mie scattering algorithms. Appl. Opt., 19:1505–1509, 1980.
[107] F. Zernike and J. A. Prins. Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der
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